Peters, J., Janzing, D., Schölkopf, B.
Elements of Causal Inference - Foundations and Learning Algorithms
Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)
Klenske, E. D.
Nonparametric Disturbance Correction and Nonlinear Dual Control
(24098), ETH Zurich, 2017 (phdthesis)
Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)
Dagstuhl Reports, 6(11):142-167, 2017 (book)
Emde, T.
Development and Evaluation of a Portable BCI System for Remote Data Acquisition
Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)
Fomina, T.
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis
Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)
Geiger, P.
Causal models for decision making via integrative inference
University of Stuttgart, Germany, 2017 (phdthesis)
Sücker, K.
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation
Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)
Rakitsch, Barbara
Modeling the polygenic architecture of complex traits
Eberhard Karls Universität Tübingen, November 2014 (phdthesis)
Kober, J., Peters, J.
Learning Motor Skills: From Algorithms to Robot Experiments
97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)
Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O’Donnell, L., Panagiotaki, E.
Computational Diffusion MRI and Brain Connectivity
pages: 255, Mathematics and Visualization, Springer, 2014 (book)
Shajarisales, N.
A Novel Causal Inference Method for Time Series
Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (mastersthesis)
Zscheischler, J.
A global analysis of extreme events and consequences for the terrestrial carbon cycle
Diss. No. 22043, ETH Zurich, Switzerland, ETH Zurich, Switzerland, 2014 (phdthesis)
Schmeißer, N.
Development of advanced methods for improving astronomical images
Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (diplomathesis)
Lacosse, E.
The Feasibility of Causal Discovery in Complex Systems: An Examination of Climate Change Attribution and Detection
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)
Huang, B.
Causal Discovery in the Presence of Time-Dependent Relations or Small Sample Size
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)
Alamgir, M.
Analysis of Distance Functions in Graphs
University of Hamburg, Germany, University of Hamburg, Germany, 2014 (phdthesis)
BakIr, G.
Extension to Kernel Dependency Estimation with Applications to Robotics
Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)
Hein, M.
Geometrical aspects of statistical learning theory
Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)
Steinke, F.
Implicit Surfaces For Modelling
Human Heads
Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)
Lal, TN.
Machine Learning Methods for Brain-Computer Interdaces
Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)
Nowozin, S.
Liver Perfusion using Level Set Methods
Biologische Kybernetik, Shanghai JiaoTong University, Shanghai, China, July 2005 (diplomathesis)
Altun, Y.
Discriminative Methods for Label Sequence Learning
Brown University, Providence, RI, USA, May 2005 (phdthesis)
Tanner, TG.
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain
Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)
Blaschko, MB.
Support Vector Classification of Images with Local Features
Biologische Kybernetik, University of Massachusetts, Amherst, May 2005 (diplomathesis)
Shin, H.
Efficient Pattern Selection for Support Vector Classifiers and its CRM Application
Biologische Kybernetik, Seoul National University, Seoul, Korea, February 2005 (phdthesis)
Ong, CS.
Kernels: Regularization and Optimization
Biologische Kybernetik, The Australian National University, Canberra, Australia, 2005 (phdthesis)
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)
Kuss, M.
Nonlinear Multivariate Analysis with Geodesic Kernels
Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)
Bousquet, O.
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms
Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted
Chapelle, O.
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
Biologische Kybernetik, 2002 (phdthesis)
Schölkopf, B.
Support vector learning
pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)