Shervashidze, N.
Scalable graph kernels
Eberhard Karls Universität Tübingen, Germany, October 2012 (phdthesis)
Zwießele, M.
Probabilistic Modelling of Expression Variation in Modern eQTL Studies
Eberhard Karls Universität Tübingen, Germany, October 2012 (mastersthesis)
Kober, J.
Learning Motor Skills: From Algorithms to Robot Experiments
Technische Universität Darmstadt, Germany, March 2012 (phdthesis)
Gomez Rodriguez, M.
Structure and Dynamics of Diffusion Networks
Department of Electrical Engineering, Stanford University, 2012 (phdthesis)
Hirsch, M.
Blind Deconvolution in Scientific Imaging & Computational Photography
Eberhard Karls Universität Tübingen, Germany, 2012 (phdthesis)
Peters, J.
Restricted structural equation models for causal inference
ETH Zurich, Switzerland, 2012 (phdthesis)
Jegelka, S.
Combinatorial Problems with Submodular Coupling in Machine Learning and Computer Vision
ETH Zürich, Switzerland, 2012 (phdthesis)
Velkov, V.
Mining correlated loci at a genome-wide scale
Eberhard Karls Universität Tübingen, Germany, 2012 (mastersthesis)
Hooge, J.
Automatische Seitenkettenzuordnung zur NMR Proteinstrukturaufklärung mittels ganzzahliger linearer Programmierung
University of Tübingen, Germany, 2012 (diplomathesis)
Klenske, E. D.
Nonparametric System Identification and Control for Periodic Error Correction in Telescopes
University of Stuttgart, 2012 (diplomathesis)
Gehler, PV.
Kernel Learning Approaches for Image Classification
Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)
Seldin, Y.
A PAC-Bayesian Approach to Structure Learning
Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, September 2009 (phdthesis)
Blaschko, MB.
Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery
Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)
Mülling, K.
Motor Control and Learning in Table Tennis
Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)
Drewe, P.
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs
Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)
Nowozin, S.
Learning with Structured Data: Applications to Computer Vision
Technische Universität Berlin, Germany, 2009 (phdthesis)
Steinke, F.
From Differential Equations to Differential Geometry: Aspects of Regularisation in Machine Learning
Universität des Saarlandes, Saarbrücken, Germany, 2009 (phdthesis)
BakIr, G.
Extension to Kernel Dependency Estimation with Applications to Robotics
Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)
Hein, M.
Geometrical aspects of statistical learning theory
Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)
Steinke, F.
Implicit Surfaces For Modelling
Human Heads
Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)
Lal, TN.
Machine Learning Methods for Brain-Computer Interdaces
Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)
Nowozin, S.
Liver Perfusion using Level Set Methods
Biologische Kybernetik, Shanghai JiaoTong University, Shanghai, China, July 2005 (diplomathesis)
Altun, Y.
Discriminative Methods for Label Sequence Learning
Brown University, Providence, RI, USA, May 2005 (phdthesis)
Tanner, TG.
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain
Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)
Blaschko, MB.
Support Vector Classification of Images with Local Features
Biologische Kybernetik, University of Massachusetts, Amherst, May 2005 (diplomathesis)
Shin, H.
Efficient Pattern Selection for Support Vector Classifiers and its CRM Application
Biologische Kybernetik, Seoul National University, Seoul, Korea, February 2005 (phdthesis)
Ong, CS.
Kernels: Regularization and Optimization
Biologische Kybernetik, The Australian National University, Canberra, Australia, 2005 (phdthesis)
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)
Kuss, M.
Nonlinear Multivariate Analysis with Geodesic Kernels
Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)
Bousquet, O.
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms
Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted
Chapelle, O.
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
Biologische Kybernetik, 2002 (phdthesis)
Schölkopf, B.
Support vector learning
pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)