88 results
(View BibTeX file of all listed publications)

**Modeling the polygenic architecture of complex traits**
Eberhard Karls Universität Tübingen, November 2014 (phdthesis)

**Learning Motor Skills: From Algorithms to Robot Experiments**
97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)

**Computational Diffusion MRI and Brain Connectivity**
pages: 255, Mathematics and Visualization, Springer, 2014 (book)

**A Novel Causal Inference Method for Time Series**
Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (mastersthesis)

**Single-Source Domain Adaptation with Target and Conditional Shift**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)

**Higher-Order Tensors in Diffusion Imaging**
In *Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data*, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)

**Fuzzy Fibers: Uncertainty in dMRI Tractography**
In *Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization*, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)

**A global analysis of extreme events and consequences for the terrestrial carbon cycle**
Diss. No. 22043, ETH Zurich, Switzerland, ETH Zurich, Switzerland, 2014 (phdthesis)

**Nonconvex Proximal Splitting with Computational Errors**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)

**Development of advanced methods for improving astronomical images**
Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (diplomathesis)

**The Feasibility of Causal Discovery in Complex Systems: An Examination of Climate Change Attribution and Detection**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)

**Causal Discovery in the Presence of Time-Dependent Relations or Small Sample Size**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)

**Active Learning - Modern Learning Theory**
In *Encyclopedia of Algorithms*, (Editors: Kao, M.-Y.), Springer Berlin Heidelberg, 2014 (incollection)

**Analysis of Distance Functions in Graphs**
University of Hamburg, Germany, University of Hamburg, Germany, 2014 (phdthesis)

**Camera-specific Image Denoising**
Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

**A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)**
In *Brain-Computer Interface Research*, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

**Semi-supervised learning in causal and anticausal settings**
In *Empirical Inference*, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Tractable large-scale optimization in machine learning**
In *Tractability: Practical Approaches to Hard Problems*, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

**Modelling and Learning Approaches to Image Denoising**
Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)

**Linear mixed models for genome-wide association studies**
University of Tübingen, Germany, 2013 (phdthesis)

**On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension**
In *Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik*, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis**
Technical University Darmstadt, Germany, 2013 (phdthesis)

**Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik**
Springer, 2013 (book)

**Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Models**
Technical University Darmstadt, Germany, 2013 (phdthesis)

**Projected Newton-type methods in machine learning**
In *Optimization for Machine Learning*, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

**Optimization for Machine Learning**
pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)

**Bayesian Time Series Models**
pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)

**Statistical Learning Theory: Models, Concepts, and Results**
In *Handbook of the History of Logic, Vol. 10: Inductive Logic*, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

**Crowdsourcing for optimisation of deconvolution methods via an iPhone application**
Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

**Learning functions with kernel methods**
University of Pavia, Italy, January 2011 (phdthesis)

**Robot Learning**
In *Encyclopedia of Machine Learning*, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

**What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI**
In *Affective Computing and Intelligent Interaction*, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

**Handbook of Statistical Bioinformatics**
pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)

**Kernel Methods in Bioinformatics **
In *Handbook of Statistical Bioinformatics*, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

**Cue Combination: Beyond Optimality**
In *Sensory Cue Integration*, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

**Model Learning in Robot Control**
Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

**Toward a Theory of Consciousness**
In *The Cognitive Neurosciences*, pages: 1201-1220, (Editors: Gazzaniga, M.S.), MIT Press, Cambridge, MA, USA, October 2009 (inbook)

**Kernel Learning Approaches for Image Classification**
Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

**A PAC-Bayesian Approach to Structure Learning**
Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, September 2009 (phdthesis)

**Text Clustering with Mixture of von Mises-Fisher Distributions**
In *Text mining: classification, clustering, and applications*, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

**Data Mining for Biologists**
In *Biological Data Mining in Protein Interaction Networks*, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

**Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery**
Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)

**Large Margin Methods for Part of Speech Tagging**
In *Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods*, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

**Motor Control and Learning in Table Tennis**
Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

**Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs**
Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

**Covariate shift and local learning by distribution matching**
In *Dataset Shift in Machine Learning*, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

**Learning with Structured Data: Applications to Computer Vision**
Technische Universität Berlin, Germany, 2009 (phdthesis)

**From Differential Equations to Differential Geometry: Aspects of Regularisation in Machine Learning**
Universität des Saarlandes, Saarbrücken, Germany, 2009 (phdthesis)

**An introduction to Kernel Learning Algorithms**
In *Kernel Methods for Remote Sensing Data Analysis*, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

**Prediction of Protein Function from Networks**
In *Semi-Supervised Learning*, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)