Ihler, A. T., Janzing, D.
Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI)
pages: 869, AUAI Press, June 2016 (proceedings)
Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.
Screening Rules for Convex Problems
2016 (unpublished) Submitted
Deisenroth, M., Szepesvári, C., Peters, J.
Proceedings of the 10th European Workshop on Reinforcement Learning, Volume 24
pages: 173, JMLR, European Workshop On Reinforcement Learning, EWRL, 2013 (proceedings)
Schölkopf, B., Luo, Z., Vovk, V.
Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik
Springer, 2013 (book)
Guyon, I., Janzing, D., Schölkopf, B.
JMLR Workshop and Conference Proceedings: Volume 6
pages: 288, MIT Press, Cambridge, MA, USA, Causality: Objectives and Assessment (NIPS Workshop) , February 2010 (proceedings)
Sigaud, O., Peters, J.
From Motor Learning to Interaction Learning in Robots
pages: 538, Studies in Computational Intelligence ; 264, (Editors: O Sigaud, J Peters), Springer, Berlin, Germany, January 2010 (book)
Chapelle, O., Schölkopf, B., Zien, A.
Semi-Supervised Learning
pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)
Weiss, Y., Schölkopf, B., Platt, J.
Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference
Proceedings of the 19th Annual Conference on Neural Information Processing Systems (NIPS 2005), pages: 1676, MIT Press, Cambridge, MA, USA, 19th Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (proceedings)
Rasmussen, CE., Williams, CKI.
Gaussian Processes for Machine Learning
pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)
Quinonero Candela, J., Dagan, I., Magnini, B., Lauria, F.
Machine Learning Challenges: evaluating predictive uncertainty, visual object classification and recognising textual entailment
Proceedings of the First Pascal Machine Learning Challenges Workshop on Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Object Classification and Recognizing Textual Entailment (MLCW 2005), pages: 462, Lecture Notes in Computer Science, Springer, Heidelberg, Germany, First Pascal Machine Learning Challenges Workshop (MLCW), 2006 (proceedings)
Schölkopf, B., Warmuth, M.
Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), LNCS Vol. 2777
Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), COLT/Kernel 2003, pages: 746, Springer, Berlin, Germany, 16th Annual Conference on Learning Theory and 7th Kernel Workshop, November 2003, Lecture Notes in Computer Science ; 2777 (proceedings)
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)
Schölkopf, B.
Support vector learning
pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)