Header logo is ei


2017


no image
Generalized exploration in policy search

van Hoof, H., Tanneberg, D., Peters, J.

Machine Learning, 106(9-10):1705-1724 , (Editors: Kurt Driessens, Dragi Kocev, Marko Robnik‐Sikonja, and Myra Spiliopoulou), October 2017, Special Issue of the ECML PKDD 2017 Journal Track (article)

DOI Project Page [BibTex]

2017

DOI Project Page [BibTex]


no image
Probabilistic Prioritization of Movement Primitives

Paraschos, A., Lioutikov, R., Peters, J., Neumann, G.

Proceedings of the International Conference on Intelligent Robot Systems, and IEEE Robotics and Automation Letters (RA-L), 2(4):2294-2301, October 2017 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Ecological feedback in quorum-sensing microbial populations can induce heterogeneous production of autoinducers

Bauer*, M., Knebel*, J., Lechner, M., Pickl, P., Frey, E.

{eLife}, July 2017, *equal contribution (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning Movement Primitive Libraries through Probabilistic Segmentation

Lioutikov, R., Neumann, G., Maeda, G., Peters, J.

International Journal of Robotics Research, 36(8):879-894, July 2017 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Guiding Trajectory Optimization by Demonstrated Distributions

Osa, T., Ghalamzan E., A. M., Stolkin, R., Lioutikov, R., Peters, J., Neumann, G.

IEEE Robotics and Automation Letters, 2(2):819-826, April 2017 (article)

DOI [BibTex]

DOI [BibTex]


no image
Whole-body multi-contact motion in humans and humanoids: Advances of the CoDyCo European project

Padois, V., Ivaldi, S., Babic, J., Mistry, M., Peters, J., Nori, F.

Robotics and Autonomous Systems, 90, pages: 97-117, April 2017, Special Issue on New Research Frontiers for Intelligent Autonomous Systems (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Probabilistic Movement Primitives for Coordination of Multiple Human-Robot Collaborative Tasks

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., Peters, J.

Autonomous Robots, 41(3):593-612, March 2017 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Bioinspired tactile sensor for surface roughness discrimination

Yi, Z., Zhang, Y., Peters, J.

Sensors and Actuators A: Physical, 255, pages: 46-53, March 2017 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Kupcsik, A., Deisenroth, M., Peters, J., Ai Poh, L., Vadakkepat, V., Neumann, G.

Artificial Intelligence, 247, pages: 415-439, 2017, Special Issue on AI and Robotics (article)

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Anticipatory Action Selection for Human-Robot Table Tennis

Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., Peters, J.

Artificial Intelligence, 247, pages: 399-414, 2017, Special Issue on AI and Robotics (article)

Abstract
Abstract Anticipation can enhance the capability of a robot in its interaction with humans, where the robot predicts the humans' intention for selecting its own action. We present a novel framework of anticipatory action selection for human-robot interaction, which is capable to handle nonlinear and stochastic human behaviors such as table tennis strokes and allows the robot to choose the optimal action based on prediction of the human partner's intention with uncertainty. The presented framework is generic and can be used in many human-robot interaction scenarios, for example, in navigation and human-robot co-manipulation. In this article, we conduct a case study on human-robot table tennis. Due to the limited amount of time for executing hitting movements, a robot usually needs to initiate its hitting movement before the opponent hits the ball, which requires the robot to be anticipatory based on visual observation of the opponent's movement. Previous work on Intention-Driven Dynamics Models (IDDM) allowed the robot to predict the intended target of the opponent. In this article, we address the problem of action selection and optimal timing for initiating a chosen action by formulating the anticipatory action selection as a Partially Observable Markov Decision Process (POMDP), where the transition and observation are modeled by the \{IDDM\} framework. We present two approaches to anticipatory action selection based on the \{POMDP\} formulation, i.e., a model-free policy learning method based on Least-Squares Policy Iteration (LSPI) that employs the \{IDDM\} for belief updates, and a model-based Monte-Carlo Planning (MCP) method, which benefits from the transition and observation model by the IDDM. Experimental results using real data in a simulated environment show the importance of anticipatory action selection, and that \{POMDPs\} are suitable to formulate the anticipatory action selection problem by taking into account the uncertainties in prediction. We also show that existing algorithms for POMDPs, such as \{LSPI\} and MCP, can be applied to substantially improve the robot's performance in its interaction with humans.

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
easyGWAS: A Cloud-based Platform for Comparing the Results of Genome-wide Association Studies

Grimm, D., Roqueiro, D., Salome, P., Kleeberger, S., Greshake, B., Zhu, W., Liu, C., Lippert, C., Stegle, O., Schölkopf, B., Weigel, D., Borgwardt, K.

The Plant Cell, 29(1):5-19, 2017 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B. J., Disselhorst, J. A.

Molecular Imaging and Biology, 19(3):391-397, 2017 (article)

DOI [BibTex]

DOI [BibTex]


no image
Minimax Estimation of Kernel Mean Embeddings

Tolstikhin, I., Sriperumbudur, B., Muandet, K.

Journal of Machine Learning Research, 18(86):1-47, 2017 (article)

link (url) Project Page [BibTex]


no image
Kernel Mean Embedding of Distributions: A Review and Beyond

Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf, B.

Foundations and Trends in Machine Learning, 10(1-2):1-141, 2017 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Prediction of intention during interaction with iCub with Probabilistic Movement Primitives

Dermy, O., Paraschos, A., Ewerton, M., Charpillet, F., Peters, J., Ivaldi, S.

Frontiers in Robotics and AI, 4, pages: 45, 2017 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Manifold-based multi-objective policy search with sample reuse

Parisi, S., Pirotta, M., Peters, J.

Neurocomputing, 263, pages: 3-14, (Editors: Madalina Drugan, Marco Wiering, Peter Vamplew, and Madhu Chetty), 2017, Special Issue on Multi-Objective Reinforcement Learning (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Spectral Clustering predicts tumor tissue heterogeneity using dynamic 18F-FDG PET: a complement to the standard compartmental modeling approach

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B. J., Disselhorst, J. A.

Journal of Nuclear Medicine, 58(4):651-657, 2017 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Electroencephalographic identifiers of motor adaptation learning

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

Journal of Neural Engineering, 14(4):046027, 2017 (article)

link (url) [BibTex]

link (url) [BibTex]


no image
Detecting distortions of peripherally presented letter stimuli under crowded conditions

Wallis, T. S. A., Tobias, S., Bethge, M., Wichmann, F. A.

Attention, Perception, & Psychophysics, 79(3):850-862, 2017 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Temporal evolution of the central fixation bias in scene viewing

Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.

Journal of Vision, 17(13):3, 2017 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
BundleMAP: Anatomically Localized Classification, Regression, and Hypothesis Testing in Diffusion MRI

Khatami, M., Schmidt-Wilcke, T., Sundgren, P. C., Abbasloo, A., Schölkopf, B., Schultz, T.

Pattern Recognition, 63, pages: 593-600, 2017 (article)

DOI [BibTex]

DOI [BibTex]


no image
A parametric texture model based on deep convolutional features closely matches texture appearance for humans

Wallis, T. S. A., Funke, C. M., Ecker, A. S., Gatys, L. A., Wichmann, F. A., Bethge, M.

Journal of Vision, 17(12), 2017 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Model Selection for Gaussian Mixture Models

Huang, T., Peng, H., Zhang, K.

Statistica Sinica, 27(1):147-169, 2017 (article)

link (url) [BibTex]

link (url) [BibTex]


no image
An image-computable psychophysical spatial vision model

Schütt, H. H., Wichmann, F. A.

Journal of Vision, 17(12), 2017 (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Methods and measurements to compare men against machines

Wichmann, F. A., Janssen, D. H. J., Geirhos, R., Aguilar, G., Schütt, H. H., Maertens, M., Bethge, M.

Electronic Imaging, pages: 36-45(10), 2017 (article)

DOI [BibTex]

DOI [BibTex]


no image
A Comparison of Autoregressive Hidden Markov Models for Multimodal Manipulations With Variable Masses

Kroemer, O., Peters, J.

IEEE Robotics and Automation Letters, 2(2):1101-1108, 2017 (article)

DOI [BibTex]

DOI [BibTex]


no image
Phase Estimation for Fast Action Recognition and Trajectory Generation in Human-Robot Collaboration

Maeda, G., Ewerton, M., Neumann, G., Lioutikov, R., Peters, J.

International Journal of Robotics Research, 36(13-14):1579-1594, 2017, Special Issue on the Seventeenth International Symposium on Robotics Research (article)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Phase-coded Aperture Camera with Programmable Optics

Chen, J., Hirsch, M., Heintzmann, R., Eberhardt, B., Lensch, H. P. A.

Electronic Imaging, 2017(17):70-75, 2017 (article)

DOI [BibTex]

DOI [BibTex]


no image
On Maximum Entropy and Inference

Gresele, L., Marsili, M.

Entropy, 19(12):article no. 642, 2017 (article)

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Engagement Models that Consider Individual Factors in HRI: On the Relation of Extroversion and Negative Attitude Towards Robots to Gaze and Speech During a Human-Robot Assembly Task

Ivaldi, S., Lefort, S., Peters, J., Chetouani, M., Provasi, J., Zibetti, E.

International Journal of Social Robotics, 9(1):63-86, 2017 (article)

DOI [BibTex]


no image
Non-parametric Policy Search with Limited Information Loss

van Hoof, H., Neumann, G., Peters, J.

Journal of Machine Learning Research , 18(73):1-46, 2017 (article)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Stability of Controllers for Gaussian Process Dynamics

Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Peters, J.

Journal of Machine Learning Research, 18(100):1-37, 2017 (article)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
SUV-quantification of physiological lung tissue in an integrated PET/MR-system: Impact of lung density and bone tissue

Seith, F., Schmidt, H., Gatidis, S., Bezrukov, I., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

PLOS ONE, 12(5):1-13, 2017 (article)

DOI [BibTex]

DOI [BibTex]

1998


no image
Book Review: An Introduction to Fuzzy Logic for Practical Applications

Peters, J.

K{\"u}nstliche Intelligenz (KI), 98(4):60-60, November 1998 (article)

[BibTex]

1998

[BibTex]


no image
Where did I take that snapshot? Scene-based homing by image matching

Franz, M., Schölkopf, B., Bülthoff, H.

Biological Cybernetics, 79(3):191-202, October 1998 (article)

Abstract
In homing tasks, the goal is often not marked by visible objects but must be inferred from the spatial relation to the visual cues in the surrounding scene. The exact computation of the goal direction would require knowledge about the distances to visible landmarks, information, which is not directly available to passive vision systems. However, if prior assumptions about typical distance distributions are used, a snapshot taken at the goal suffices to compute the goal direction from the current view. We show that most existing approaches to scene-based homing implicitly assume an isotropic landmark distribution. As an alternative, we propose a homing scheme that uses parameterized displacement fields. These are obtained from an approximation that incorporates prior knowledge about perspective distortions of the visual environment. A mathematical analysis proves that both approximations do not prevent the schemes from approaching the goal with arbitrary accuracy, but lead to different errors in the computed goal direction. Mobile robot experiments are used to test the theoretical predictions and to demonstrate the practical feasibility of the new approach.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion

Smola, A., Schölkopf, B.

Algorithmica, 22(1-2):211-231, September 1998 (article)

Abstract
We present a kernel-based framework for pattern recognition, regression estimation, function approximation, and multiple operator inversion. Adopting a regularization-theoretic framework, the above are formulated as constrained optimization problems. Previous approaches such as ridge regression, support vector methods, and regularization networks are included as special cases. We show connections between the cost function and some properties up to now believed to apply to support vector machines only. For appropriately chosen cost functions, the optimal solution of all the problems described above can be found by solving a simple quadratic programming problem.

PDF DOI [BibTex]


no image
The moon tilt illusion

Schölkopf, B.

Perception, 27(10):1229-1232, August 1998 (article)

Abstract
Besides the familiar moon illusion [eg Hershenson, 1989 The Moon illusion (Hillsdale, NJ: Lawrence Erlbaum Associates)], wherein the moon appears bigger when it is close to the horizon, there is a less known illusion which causes the moon‘s illuminated side to appear turned away from the direction of the sun. An experiment documenting the effect is described, and a possible explanation is put forward.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome.

Davison, T., Yin, P., Nie, E., Kay, C., CH, ..

Oncogene, 17(5):651-656, August 1998 (article)

Abstract
Recently two germline mutations in the oligomerization domain of p53 have been identified in patients with Li-Fraumeni and Li-Fraumeni-like Syndromes. We have used biophysical and biochemical methods to characterize these two mutants in order to better understand their functional defects and the role of the p53 oligomerization domain (residues 325-355) in oncogenesis. We find that residues 310-360 of the L344P mutant are monomeric, apparently unfolded and cannot interact with wild-type (WT) p53. The full length L344P protein is unable to bind sequence specifically to DNA and is therefore an inactive, but not a dominant negative mutant. R337C, on the other hand, can form dimers and tetramers, can hetero-oligomerize with WTp53 and can bind to a p53 consensus element. However, the thermal stability of R337C is much lower than that of WTp53 and at physiological temperatures more than half of this mutant is less than tetrameric. Thus, the R337C mutant retains some functional activity yet leads to a predisposition to cancer, suggesting that even partial inactivation of p53 oligomerization is sufficient for accelerated tumour progression.

Web [BibTex]


no image
Nonlinear Component Analysis as a Kernel Eigenvalue Problem

Schölkopf, B., Smola, A., Müller, K.

Neural Computation, 10(5):1299-1319, July 1998 (article)

Abstract
A new method for performing a nonlinear form of principal component analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map—for instance, the space of all possible five-pixel products in 16 × 16 images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

Web DOI [BibTex]

Web DOI [BibTex]


no image
SVMs — a practical consequence of learning theory

Schölkopf, B.

IEEE Intelligent Systems and their Applications, 13(4):18-21, July 1998 (article)

Abstract
My first exposure to Support Vector Machines came this spring when heard Sue Dumais present impressive results on text categorization using this analysis technique. This issue's collection of essays should help familiarize our readers with this interesting new racehorse in the Machine Learning stable. Bernhard Scholkopf, in an introductory overview, points out that a particular advantage of SVMs over other learning algorithms is that it can be analyzed theoretically using concepts from computational learning theory, and at the same time can achieve good performance when applied to real problems. Examples of these real-world applications are provided by Sue Dumais, who describes the aforementioned text-categorization problem, yielding the best results to date on the Reuters collection, and Edgar Osuna, who presents strong results on application to face detection. Our fourth author, John Platt, gives us a practical guide and a new technique for implementing the algorithm efficiently.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Support vector machines

Hearst, M., Dumais, S., Osman, E., Platt, J., Schölkopf, B.

IEEE Intelligent Systems and their Applications, 13(4):18-28, July 1998 (article)

Abstract
My first exposure to Support Vector Machines came this spring when heard Sue Dumais present impressive results on text categorization using this analysis technique. This issue's collection of essays should help familiarize our readers with this interesting new racehorse in the Machine Learning stable. Bernhard Scholkopf, in an introductory overview, points out that a particular advantage of SVMs over other learning algorithms is that it can be analyzed theoretically using concepts from computational learning theory, and at the same time can achieve good performance when applied to real problems. Examples of these real-world applications are provided by Sue Dumais, who describes the aforementioned text-categorization problem, yielding the best results to date on the Reuters collection, and Edgar Osuna, who presents strong results on application to face detection. Our fourth author, John Platt, gives us a practical guide and a new technique for implementing the algorithm efficiently.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
The connection between regularization operators and support vector kernels.

Smola, A., Schölkopf, B., Müller, K.

Neural Networks, 11(4):637-649, June 1998 (article)

Abstract
n this paper a correspondence is derived between regularization operators used in regularization networks and support vector kernels. We prove that the Green‘s Functions associated with regularization operators are suitable support vector kernels with equivalent regularization properties. Moreover, the paper provides an analysis of currently used support vector kernels in the view of regularization theory and corresponding operators associated with the classes of both polynomial kernels and translation invariant kernels. The latter are also analyzed on periodical domains. As a by-product we show that a large number of radial basis functions, namely conditionally positive definite functions, may be used as support vector kernels.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning view graphs for robot navigation

Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H.

Autonomous Robots, 5(1):111-125, March 1998 (article)

Abstract
We present a purely vision-based scheme for learning a topological representation of an open environment. The system represents selected places by local views of the surrounding scene, and finds traversable paths between them. The set of recorded views and their connections are combined into a graph model of the environment. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. In robot experiments, we demonstrate that complex visual exploration and navigation tasks can thus be performed without using metric information.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
No role for motion blur in either motion detection or motion based image segmentation

Wichmann, F., Henning, G.

Journal of the Optical Society of America A, 15 (2), pages: 297-306, 1998 (article)

Abstract
Determined the influence of high-spatial-frequency losses induced by motion on motion detection and on motion-based image segmentation. Motion detection and motion-based segmentation tasks were performed with either spectrally low-pass or spectrally broadband stimuli. Performance on these tasks was compared with a condition having no motion but in which form differences mimicked the perceptual loss of high spatial frequencies produced by motion. This allowed the relative salience of motion and motion-induced blur to be determined. Neither image segmentation nor motion detection was sensitive to the high-spatial-frequency content of the stimuli. Thus the change in perceptual form produced in moving stimuli is not normally used as a cue either for motion detection or for motion-based image segmentation in ordinary situations.

PDF [BibTex]

PDF [BibTex]


no image
PET with 18fluorodeoxyglucose and hexamethylpropylene amine oxime SPECT in late whiplash syndrome

Bicik, I., Radanov, B., Schaefer, N., Dvorak, J., Blum, B., Weber, B., Burger, C., von Schulthess, G., Buck, A.

Neurology, 51, pages: 345-350, 1998 (article)

[BibTex]

[BibTex]


no image
Changes of cerebral blood flow during short-term exposure to normobaric hypoxia

Buck, A., Schirlo, C., Jasinsky, V., Weber, B., Burger, C., von Schulthess, G., Koller, E., Pavlicek, V.

J Cereb Blood Flow Metab, 18, pages: 906-910, 1998 (article)

[BibTex]

[BibTex]