Header logo is ei


2002


no image
Optimized Support Vector Machines for Nonstationary Signal Classification

Davy, M., Gretton, A., Doucet, A., Rayner, P.

IEEE Signal Processing Letters, 9(12):442-445, December 2002 (article)

Abstract
This letter describes an efficient method to perform nonstationary signal classification. A support vector machine (SVM) algorithm is introduced and its parameters optimised in a principled way. Simulations demonstrate that our low complexity method outperforms state-of-the-art nonstationary signal classification techniques.

PostScript Web DOI [BibTex]

2002

PostScript Web DOI [BibTex]


no image
A New Discriminative Kernel from Probabilistic Models

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.

Neural Computation, 14(10):2397-2414, October 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Functional Genomics of Osteoarthritis

Aigner, T., Bartnik, E., Zien, A., Zimmer, R.

Pharmacogenomics, 3(5):635-650, September 2002 (article)

Web [BibTex]

Web [BibTex]


no image
Constructing Boosting algorithms from SVMs: an application to one-class classification.

Rätsch, G., Mika, S., Schölkopf, B., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9):1184-1199, September 2002 (article)

Abstract
We show via an equivalence of mathematical programs that a support vector (SV) algorithm can be translated into an equivalent boosting-like algorithm and vice versa. We exemplify this translation procedure for a new algorithm—one-class leveraging—starting from the one-class support vector machine (1-SVM). This is a first step toward unsupervised learning in a boosting framework. Building on so-called barrier methods known from the theory of constrained optimization, it returns a function, written as a convex combination of base hypotheses, that characterizes whether a given test point is likely to have been generated from the distribution underlying the training data. Simulations on one-class classification problems demonstrate the usefulness of our approach.

DOI [BibTex]

DOI [BibTex]


no image
Co-Clustering of Biological Networks and Gene Expression Data

Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.

Bioinformatics, (Suppl 1):145S-154S, 18, July 2002 (article)

Abstract
Motivation: Large scale gene expression data are often analysed by clustering genes based on gene expression data alone, though a priori knowledge in the form of biological networks is available. The use of this additional information promises to improve exploratory analysis considerably. Results: We propose constructing a distance function which combines information from expression data and biological networks. Based on this function, we compute a joint clustering of genes and vertices of the network. This general approach is elaborated for metabolic networks. We define a graph distance function on such networks and combine it with a correlation-based distance function for gene expression measurements. A hierarchical clustering and an associated statistical measure is computed to arrive at a reasonable number of clusters. Our method is validated using expression data of the yeast diauxic shift. The resulting clusters are easily interpretable in terms of the biochemical network and the gene expression data and suggest that our method is able to automatically identify processes that are relevant under the measured conditions.

Web [BibTex]

Web [BibTex]


no image
Confidence measures for protein fold recognition

Sommer, I., Zien, A., von Ohsen, N., Zimmer, R., Lengauer, T.

Bioinformatics, 18(6):802-812, June 2002 (article)

[BibTex]

[BibTex]


no image
The contributions of color to recognition memory for natural scenes

Wichmann, F., Sharpe, L., Gegenfurtner, K.

Journal of Experimental Psychology: Learning, Memory and Cognition, 28(3):509-520, May 2002 (article)

Abstract
The authors used a recognition memory paradigm to assess the influence of color information on visual memory for images of natural scenes. Subjects performed 5-10% better for colored than for black-and-white images independent of exposure duration. Experiment 2 indicated little influence of contrast once the images were suprathreshold, and Experiment 3 revealed that performance worsened when images were presented in color and tested in black and white, or vice versa, leading to the conclusion that the surface property color is part of the memory representation. Experiments 4 and 5 exclude the possibility that the superior recognition memory for colored images results solely from attentional factors or saliency. Finally, the recognition memory advantage disappears for falsely colored images of natural scenes: The improvement in recognition memory depends on the color congruence of presented images with learned knowledge about the color gamut found within natural scenes. The results can be accounted for within a multiple memory systems framework.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Training invariant support vector machines

DeCoste, D., Schölkopf, B.

Machine Learning, 46(1-3):161-190, January 2002 (article)

Abstract
Practical experience has shown that in order to obtain the best possible performance, prior knowledge about invariances of a classification problem at hand ought to be incorporated into the training procedure. We describe and review all known methods for doing so in support vector machines, provide experimental results, and discuss their respective merits. One of the significant new results reported in this work is our recent achievement of the lowest reported test error on the well-known MNIST digit recognition benchmark task, with SVM training times that are also significantly faster than previous SVM methods.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Model Selection for Small Sample Regression

Chapelle, O., Vapnik, V., Bengio, Y.

Machine Learning, 48(1-3):9-23, 2002 (article)

Abstract
Model selection is an important ingredient of many machine learning algorithms, in particular when the sample size in small, in order to strike the right trade-off between overfitting and underfitting. Previous classical results for linear regression are based on an asymptotic analysis. We present a new penalization method for performing model selection for regression that is appropriate even for small samples. Our penalization is based on an accurate estimator of the ratio of the expected training error and the expected generalization error, in terms of the expected eigenvalues of the input covariance matrix.

PostScript [BibTex]

PostScript [BibTex]


no image
Contrast discrimination with sinusoidal gratings of different spatial frequency

Bird, C., Henning, G., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1267-1273, 2002 (article)

Abstract
The detectability of contrast increments was measured as a function of the contrast of a masking or “pedestal” grating at a number of different spatial frequencies ranging from 2 to 16 cycles per degree of visual angle. The pedestal grating always had the same orientation, spatial frequency and phase as the signal. The shape of the contrast increment threshold versus pedestal contrast (TvC) functions depend of the performance level used to define the “threshold,” but when both axes are normalized by the contrast corresponding to 75% correct detection at each frequency, the (TvC) functions at a given performance level are identical. Confidence intervals on the slope of the rising part of the TvC functions are so wide that it is not possible with our data to reject Weber’s Law.

PDF [BibTex]

PDF [BibTex]


no image
A Bennett Concentration Inequality and Its Application to Suprema of Empirical Processes

Bousquet, O.

C. R. Acad. Sci. Paris, Ser. I, 334, pages: 495-500, 2002 (article)

Abstract
We introduce new concentration inequalities for functions on product spaces. They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version \cite{Rio01b} of Talagrand's inequality \cite{Talagrand96} for equidistributed variables.

PDF PostScript [BibTex]


no image
Numerical evolution of axisymmetric, isolated systems in general relativity

Frauendiener, J., Hein, M.

Physical Review D, 66, pages: 124004-124004, 2002 (article)

Abstract
We describe in this article a new code for evolving axisymmetric isolated systems in general relativity. Such systems are described by asymptotically flat space-times, which have the property that they admit a conformal extension. We are working directly in the extended conformal manifold and solve numerically Friedrich's conformal field equations, which state that Einstein's equations hold in the physical space-time. Because of the compactness of the conformal space-time the entire space-time can be calculated on a finite numerical grid. We describe in detail the numerical scheme, especially the treatment of the axisymmetry and the boundary.

GZIP [BibTex]

GZIP [BibTex]


no image
Marginalized kernels for biological sequences

Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 18(Suppl 1):268-275, 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Stability and Generalization

Bousquet, O., Elisseeff, A.

Journal of Machine Learning Research, 2, pages: 499-526, 2002 (article)

Abstract
We define notions of stability for learning algorithms and show how to use these notions to derive generalization error bounds based on the empirical error and the leave-one-out error. The methods we use can be applied in the regression framework as well as in the classification one when the classifier is obtained by thresholding a real-valued function. We study the stability properties of large classes of learning algorithms such as regularization based algorithms. In particular we focus on Hilbert space regularization and Kullback-Leibler regularization. We demonstrate how to apply the results to SVM for regression and classification.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Subspace information criterion for non-quadratic regularizers – model selection for sparse regressors

Tsuda, K., Sugiyama, M., Müller, K.

IEEE Trans Neural Networks, 13(1):70-80, 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Modeling splicing sites with pairwise correlations

Arita, M., Tsuda, K., Asai, K.

Bioinformatics, 18(Suppl 2):27-34, 2002 (article)

PDF [BibTex]

PDF [BibTex]


no image
Perfusion Quantification using Gaussian Process Deconvolution

Andersen, IK., Szymkowiak, A., Rasmussen, CE., Hanson, LG., Marstrand, JR., Larsson, HBW., Hansen, LK.

Magnetic Resonance in Medicine, (48):351-361, 2002 (article)

Abstract
The quantification of perfusion using dynamic susceptibility contrast MR imaging requires deconvolution to obtain the residual impulse-response function (IRF). Here, a method using a Gaussian process for deconvolution, GPD, is proposed. The fact that the IRF is smooth is incorporated as a constraint in the method. The GPD method, which automatically estimates the noise level in each voxel, has the advantage that model parameters are optimized automatically. The GPD is compared to singular value decomposition (SVD) using a common threshold for the singular values and to SVD using a threshold optimized according to the noise level in each voxel. The comparison is carried out using artificial data as well as using data from healthy volunteers. It is shown that GPD is comparable to SVD variable optimized threshold when determining the maximum of the IRF, which is directly related to the perfusion. GPD provides a better estimate of the entire IRF. As the signal to noise ratio increases or the time resolution of the measurements increases, GPD is shown to be superior to SVD. This is also found for large distribution volumes.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Tracking a Small Set of Experts by Mixing Past Posteriors

Bousquet, O., Warmuth, M.

Journal of Machine Learning Research, 3, pages: 363-396, (Editors: Long, P.), 2002 (article)

Abstract
In this paper, we examine on-line learning problems in which the target concept is allowed to change over time. In each trial a master algorithm receives predictions from a large set of n experts. Its goal is to predict almost as well as the best sequence of such experts chosen off-line by partitioning the training sequence into k+1 sections and then choosing the best expert for each section. We build on methods developed by Herbster and Warmuth and consider an open problem posed by Freund where the experts in the best partition are from a small pool of size m. Since k >> m, the best expert shifts back and forth between the experts of the small pool. We propose algorithms that solve this open problem by mixing the past posteriors maintained by the master algorithm. We relate the number of bits needed for encoding the best partition to the loss bounds of the algorithms. Instead of paying log n for choosing the best expert in each section we first pay log (n choose m) bits in the bounds for identifying the pool of m experts and then log m bits per new section. In the bounds we also pay twice for encoding the boundaries of the sections.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
A femoral arteriovenous shunt facilitates arterial whole blood sampling in animals

Weber, B., Burger, C., Biro, P., Buck, A.

Eur J Nucl Med Mol Imaging, 29, pages: 319-323, 2002 (article)

[BibTex]

[BibTex]


no image
Contrast discrimination with pulse-trains in pink noise

Henning, G., Bird, C., Wichmann, F.

Journal of the Optical Society of America A, 19(7), pages: 1259-1266, 2002 (article)

Abstract
Detection performance was measured with sinusoidal and pulse-train gratings. Although the 2.09-c/deg pulse-train, or line gratings, contained at least 8 harmonics all at equal contrast, they were no more detectable than their most detectable component. The addition of broadband pink noise designed to equalize the detectability of the components of the pulse train made the pulse train about a factor of four more detectable than any of its components. However, in contrast-discrimination experiments, with a pedestal or masking grating of the same form and phase as the signal and 15% contrast, the noise did not affect the discrimination performance of the pulse train relative to that obtained with its sinusoidal components. We discuss the implications of these observations for models of early vision in particular the implications for possible sources of internal noise.

PDF [BibTex]

PDF [BibTex]


no image
Choosing Multiple Parameters for Support Vector Machines

Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.

Machine Learning, 46(1):131-159, 2002 (article)

Abstract
The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVM) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.

PDF PostScript [BibTex]

PDF PostScript [BibTex]

2000


no image
Knowledge Discovery in Databases: An Information Retrieval Perspective

Ong, CS.

Malaysian Journal of Computer Science, 13(2):54-63, December 2000 (article)

Abstract
The current trend of increasing capabilities in data generation and collection has resulted in an urgent need for data mining applications, also called knowledge discovery in databases. This paper identifies and examines the issues involved in extracting useful grains of knowledge from large amounts of data. It describes a framework to categorise data mining systems. The author also gives an overview of the issues pertaining to data pre processing, as well as various information gathering methodologies and techniques. The paper covers some popular tools such as classification, clustering, and generalisation. A summary of statistical and machine learning techniques used currently is also provided.

PDF [BibTex]

2000

PDF [BibTex]


no image
A Simple Iterative Approach to Parameter Optimization

Zien, A., Zimmer, R., Lengauer, T.

Journal of Computational Biology, 7(3,4):483-501, November 2000 (article)

Abstract
Various bioinformatics problems require optimizing several different properties simultaneously. For example, in the protein threading problem, a scoring function combines the values for different parameters of possible sequence-to-structure alignments into a single score to allow for unambiguous optimization. In this context, an essential question is how each property should be weighted. As the native structures are known for some sequences, a partial ordering on optimal alignments to other structures, e.g., derived from structural comparisons, may be used to adjust the weights. To resolve the arising interdependence of weights and computed solutions, we propose a heuristic approach: iterating the computation of solutions (here, threading alignments) given the weights and the estimation of optimal weights of the scoring function given these solutions via systematic calibration methods. For our application (i.e., threading), this iterative approach results in structurally meaningful weights that significantly improve performance on both the training and the test data sets. In addition, the optimized parameters show significant improvements on the recognition rate for a grossly enlarged comprehensive benchmark, a modified recognition protocol as well as modified alignment types (local instead of global and profiles instead of single sequences). These results show the general validity of the optimized weights for the given threading program and the associated scoring contributions.

Web [BibTex]

Web [BibTex]


no image
Identification of Drug Target Proteins

Zien, A., Küffner, R., Mevissen, T., Zimmer, R., Lengauer, T.

ERCIM News, 43, pages: 16-17, October 2000 (article)

Web [BibTex]

Web [BibTex]


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.

Bioinformatics, 16(9):799-807, September 2000 (article)

Abstract
Motivation: In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). Results: The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Meanfield Approach to the Thermodynamics of a Protein-Solvent System with Application to the Oligomerization of the Tumour Suppressor p53.

Noolandi, J., Davison, TS., Vokel, A., Nie, F., Kay, C., Arrowsmith, C.

Proceedings of the National Academy of Sciences of the United States of America, 97(18):9955-9960, August 2000 (article)

Web [BibTex]

Web [BibTex]


no image
New Support Vector Algorithms

Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.

Neural Computation, 12(5):1207-1245, May 2000 (article)

Abstract
We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter {nu} lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter {epsilon} in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of {nu}, and report experimental results.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Bounds on Error Expectation for Support Vector Machines

Vapnik, V., Chapelle, O.

Neural Computation, 12(9):2013-2036, 2000 (article)

Abstract
We introduce the concept of span of support vectors (SV) and show that the generalization ability of support vector machines (SVM) depends on this new geometrical concept. We prove that the value of the span is always smaller (and can be much smaller) than the diameter of the smallest sphere containing th e support vectors, used in previous bounds. We also demonstate experimentally that the prediction of the test error given by the span is very accurate and has direct application in model selection (choice of the optimal parameters of the SVM)

GZIP [BibTex]

GZIP [BibTex]

1993


no image
Presynaptic and Postsynaptic Competition in models for the Development of Neuromuscular Connections

Rasmussen, CE., Willshaw, DJ.

Biological Cybernetics, 68, pages: 409-419, 1993 (article)

Abstract
The development of the nervous system involves in many cases interactions on a local scale rather than the execution of a fully specified genetic blueprint. The problem is to discover the nature of these interactions and the factors on which they depend. The withdrawal of polyinnervation in developing muscle is an example where such competitive interactions play an important role. We examine the possible types of competition in formal models that have plausible biological implementations. By relating the behaviour of the models to the anatomical and physiological findings we show that a model that incorporates two types of competition is superior to others. Analysis suggests that the phenomenon of intrinsic withdrawal is a side effect of the competitive mechanisms rather than a separate non-competitive feature. Full scale computer simulations have been used to confirm the capabilities of this model.

PostScript [BibTex]

1993

PostScript [BibTex]


no image
Cartesian Dynamics of Simple Molecules: X Linear Quadratomics (C∞v Symmetry).

Anderson, A., Davison, T., Nagi, N., Schlueter, S.

Spectroscopy Letters, 26, pages: 509-522, 1993 (article)

[BibTex]

[BibTex]