Header logo is ei


2004


no image
On the representation, learning and transfer of spatio-temporal movement characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, M.

International Journal of Humanoid Robotics, 1(4):613-636, December 2004 (article)

[BibTex]

2004

[BibTex]


no image
Insect-inspired estimation of egomotion

Franz, MO., Chahl, JS., Krapp, HG.

Neural Computation, 16(11):2245-2260, November 2004 (article)

Abstract
Tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during egomotion. In this study, we examine whether a simplified linear model based on the organization principles in tangential neurons can be used to estimate egomotion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and egomotion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates are of reasonable quality, albeit less reliable.

PDF PostScript Web DOI [BibTex]

PDF PostScript Web DOI [BibTex]


no image
Efficient face detection by a cascaded support-vector machine expansion

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

Proceedings of The Royal Society of London A, 460(2501):3283-3297, A, November 2004 (article)

Abstract
We describe a fast system for the detection and localization of human faces in images using a nonlinear ‘support-vector machine‘. We approximate the decision surface in terms of a reduced set of expansion vectors and propose a cascaded evaluation which has the property that the full support-vector expansion is only evaluated on the face-like parts of the image, while the largest part of typical images is classified using a single expansion vector (a simpler and more efficient classifier). As a result, only three reduced-set vectors are used, on average, to classify an image patch. Hence, the cascaded evaluation, presented in this paper, offers a thirtyfold speed-up over an evaluation using the full set of reduced-set vectors, which is itself already thirty times faster than classification using all the support vectors.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Discrete vs. Continuous: Two Sides of Machine Learning

Zhou, D.

October 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data. This talk is mainly based on the followiing contribution: (1) D. Zhou and B. Sch{\"o}lkopf: Transductive Inference with Graphs, MPI Technical report, August, 2004; (2) D. Zhou, B. Sch{\"o}lkopf and T. Hofmann. Semi-supervised Learning on Directed Graphs. NIPS 2004; (3) D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Sch{\"o}lkopf. Learning with Local and Global Consistency. NIPS 2003.

PDF [BibTex]


no image
Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Eichhorn, J.

September 2004 (talk)

Abstract
Invited talk at the workshop "Numerical, Statistical and Discrete Methods in Image Processing" at the TU M{\"u}nchen (in GERMAN)

PDF [BibTex]


no image
Learning kernels from biological networks by maximizing entropy

Tsuda, K., Noble, W.

Bioinformatics, 20(Suppl. 1):i326-i333, August 2004 (article)

Abstract
Motivation: The diffusion kernel is a general method for computing pairwise distances among all nodes in a graph, based on the sum of weighted paths between each pair of nodes. This technique has been used successfully, in conjunction with kernel-based learning methods, to draw inferences from several types of biological networks. Results: We show that computing the diffusion kernel is equivalent to maximizing the von Neumann entropy, subject to a global constraint on the sum of the Euclidean distances between nodes. This global constraint allows for high variance in the pairwise distances. Accordingly, we propose an alternative, locally constrained diffusion kernel, and we demonstrate that the resulting kernel allows for more accurate support vector machine prediction of protein functional classifications from metabolic and protein–protein interaction networks.

PDF Web [BibTex]

PDF Web [BibTex]


no image
The benefit of liquid Helium cooling for Cryo-Electron Tomography: A quantitative comparative study

Schweikert, G., Luecken, U., Pfeifer, G., Baumeister, W., Plitzko, J.

The thirteenth European Microscopy Congress, August 2004 (talk)

[BibTex]

[BibTex]


no image
Masking effect produced by Mach bands on the detection of narrow bars of random polarity

Henning, GB., Hoddinott, KT., Wilson-Smith, ZJ., Hill, NJ.

Journal of the Optical Society of America, 21(8):1379-1387, A, August 2004 (article)

[BibTex]

[BibTex]


no image
Riemannian Geometry on Graphs and its Application to Ranking and Classification

Zhou, D.

June 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data.

PDF [BibTex]


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

IEEE Transactions on Biomedical Engineering, 51(6):1003-1010, June 2004 (article)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm Optimization which are based on the training of Support Vector Machines (SVM). These algorithms can provide more accurate solutions than standard filter methods for feature selection. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

DOI [BibTex]

DOI [BibTex]


no image
Distance-Based Classification with Lipschitz Functions

von Luxburg, U., Bousquet, O.

Journal of Machine Learning Research, 5, pages: 669-695, June 2004 (article)

Abstract
The goal of this article is to develop a framework for large margin classification in metric spaces. We want to find a generalization of linear decision functions for metric spaces and define a corresponding notion of margin such that the decision function separates the training points with a large margin. It will turn out that using Lipschitz functions as decision functions, the inverse of the Lipschitz constant can be interpreted as the size of a margin. In order to construct a clean mathematical setup we isometrically embed the given metric space into a Banach space and the space of Lipschitz functions into its dual space. To analyze the resulting algorithm, we prove several representer theorems. They state that there always exist solutions of the Lipschitz classifier which can be expressed in terms of distance functions to training points. We provide generalization bounds for Lipschitz classifiers in terms of the Rademacher complexities of some Lipschitz function classes. The generality of our approach can be seen from the fact that several well-known algorithms are special cases of the Lipschitz classifier, among them the support vector machine, the linear programming machine, and the 1-nearest neighbor classifier.

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


no image
cDNA-Microarray Technology in Cartilage Research - Functional Genomics of Osteoarthritis [in German]

Aigner, T., Finger, F., Zien, A., Bartnik, E.

Zeitschrift f{\"u}r Orthop{\"a}die und ihre Grenzgebiete, 142(2):241-247, April 2004 (article)

Abstract
Functional genomics represents a new challenging approach in order to analyze complex diseases such as osteoarthritis on a molecular level. The characterization of the molecular changes of the cartilage cells, the chondrocytes, enables a better understanding of the pathomechanisms of the disease. In particular, the identification and characterization of new target molecules for therapeutic intervention is of interest. Also, potential molecular markers for diagnosis and monitoring of osteoarthritis contribute to a more appropriate patient management. The DNA-microarray technology complements (but does not replace) biochemical and biological research in new disease-relevant genes. Large-scale functional genomics will identify molecular networks such as yet identified players in the anabolic-catabolic balance of articular cartilage as well as disease-relevant intracellular signaling cascades so far rather unknown in articular chondrocytes. However, at the moment it is also important to recognize the limitations of the microarray technology in order to avoid over-interpretation of the results. This might lead to misleading results and prevent to a significant extent a proper use of the potential of this technology in the field of osteoarthritis.

[BibTex]

[BibTex]


no image
A Compression Approach to Support Vector Model Selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

Journal of Machine Learning Research, 5, pages: 293-323, April 2004 (article)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct "compression coefficients" for SVMs which measure the amount by which the training labels can be compressed by a code built from the separating hyperplane. The main idea is to relate the coding precision to geometrical concepts such as the width of the margin or the shape of the data in the feature space. The so derived compression coefficients combine well known quantities such as the radius-margin term R^2/rho^2, the eigenvalues of the kernel matrix, and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on benchmark data sets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

PDF [BibTex]

PDF [BibTex]


no image
Injecting noise for analysing the stability of ICA components

Harmeling, S., Meinecke, F., Müller, K.

Signal Processing, 84(2):255-266, February 2004 (article)

Abstract
Usually, noise is considered to be destructive. We present a new method that constructively injects noise to assess the reliability and the grouping structure of empirical ICA component estimates. Our method can be viewed as a Monte-Carlo-style approximation of the curvature of some performance measure at the solution. Simulations show that the true root-mean-squared angle distances between the real sources and the source estimates can be approximated well by our method. In a toy experiment, we see that we are also able to reveal the underlying grouping structure of the extracted ICA components. Furthermore, an experiment with fetal ECG data demonstrates that our approach is useful for exploratory data analysis of real-world data.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Independent component analysis and beyond

Oja, E., Harmeling, S., Almeida, L.

Signal Processing, 84(2):215-216, February 2004 (article)

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking

Zhou, D.

January 2004 (talk)

Abstract
We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

PDF [BibTex]


no image
Experimentally optimal v in support vector regression for different noise models and parameter settings

Chalimourda, A., Schölkopf, B., Smola, A.

Neural Networks, 17(1):127-141, January 2004 (article)

Abstract
In Support Vector (SV) regression, a parameter ν controls the number of Support Vectors and the number of points that come to lie outside of the so-called var epsilon-insensitive tube. For various noise models and SV parameter settings, we experimentally determine the values of ν that lead to the lowest generalization error. We find good agreement with the values that had previously been predicted by a theoretical argument based on the asymptotic efficiency of a simplified model of SV regression. As a side effect of the experiments, valuable information about the generalization behavior of the remaining SVM parameters and their dependencies is gained. The experimental findings are valid even for complex ‘real-world’ data sets. Based on our results on the role of the ν-SVM parameters, we discuss various model selection methods.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Introduction to Category Theory

Bousquet, O.

Internal Seminar, January 2004 (talk)

Abstract
A brief introduction to the general idea behind category theory with some basic definitions and examples. A perspective on higher dimensional categories is given.

PDF [BibTex]

PDF [BibTex]


no image
Constant infusion H215O PET and acetazolamide challenge in the assessment of the cerebral perfusion status

Weber, B., Westera, G., Treyer, V., Burger, C., Kahn, N., Buck, A.

Journal of Nuclear Medicine, (45):1344-1349, 2004 (article)

[BibTex]

[BibTex]


no image
Protein ranking: from local to global structure in the protein similarity network

Weston, J., Elisseeff, A., Zhou, D., Leslie, C., Noble, W.

Proceedings of the National Academy of Science, 101(17):6559-6563, 2004 (article)

Abstract
Biologists regularly search databases of DNA or protein sequences for evolutionary or functional relationships to a given query sequence. We describe a ranking algorithm that exploits the entire network structure of similarity relationships among proteins in a sequence database by performing a diffusion operation on a pre-computed, weighted network. The resulting ranking algorithm, evaluated using a human-curated database of protein structures, is efficient and provides significantly better rankings than a local network search algorithm such as PSI-BLAST.

Web [BibTex]

Web [BibTex]


no image
Asymptotic Properties of the Fisher Kernel

Tsuda, K., Akaho, S., Kawanabe, M., Müller, K.

Neural Computation, 16(1):115-137, 2004 (article)

PDF [BibTex]

PDF [BibTex]


no image
Some observations on the effects of slant and texture type on slant-from-texture

Rosas, P., Wichmann, F., Wagemans, J.

Vision Research, 44(13):1511-1535, 2004 (article)

Abstract
We measure the performance of five subjects in a slant-discrimination task for differently textured planes. As textures we used uniform lattices, randomly displaced lattices, circles (polka dots), Voronoi tessellations, plaids, 1/f noise, “coherent” noise and a leopard skin-like texture. Our results show: (1) Improving performance with larger slants for all textures. (2) Thus, following from (1), cases of “non-symmetrical” performance around a particular orientation. (3) For orientations sufficiently slanted, the different textures do not elicit major differences in performance, (4) while for orientations closer to the vertical plane there are marked differences between them. (5) These differences allow a rank-order of textures to be formed according to their “helpfulness”– that is, how easy the discrimination task is when a particular texture is mapped on the plane. Polka dots tend to allow the best slant discrimination performance, noise patterns the worst. Two additional experiments were conducted to test the generality of the obtained rank-order. First, the tilt of the planes was rotated to break the axis of gravity present in the original discrimination experiment. Second, the task was changed to a slant report task via probe adjustment. The results of both control experiments confirmed the texture-based rank-order previously obtained. We comment on the importance of these results for depth perception research in general, and in particular the implications our results have for studies of cue combination (sensor fusion) using texture as one of the cues involved.

PDF [BibTex]

PDF [BibTex]


no image
Protein homology detection using string alignment kernels

Saigo, H., Vert, J., Ueda, N., Akutsu, T.

Bioinformatics, 20(11):1682-1689, 2004 (article)

Abstract
Remote homology detection between protein sequences is a central problem in computational biology. Discriminative methods involving support vector machines (SVM) are currently the most effective methods for the problem of superfamily recognition in the SCOP database. The performance of SVMs depend critically on the kernel function used to quantify the similarity between sequences. We propose new kernels for strings adapted to biological sequences, which we call local alignment kernels. These kernels measure the similarity between two sequences by summing up scores obtained from local alignments with gaps of the sequences. When tested in combination with SVM on their ability to recognize SCOP superfamilies on a benchmark dataset, the new kernels outperform state-of-the art methods for remote homology detection.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Minimizing the Cross Validation Error to Mix Kernel Matrices of Heterogeneous Biological Data

Tsuda, K., Uda, S., Kin, T., Asai, K.

Neural Processing Letters, 19, pages: 63-72, 2004 (article)

PDF [BibTex]

PDF [BibTex]


no image
A Tutorial on Support Vector Regression

Smola, A., Schölkopf, B.

Statistics and Computing, 14(3):199-222, 2004 (article)

Web [BibTex]

Web [BibTex]


no image
Bayesian analysis of the Scatterometer Wind Retrieval Inverse Problem: Some New Approaches

Cornford, D., Csato, L., Evans, D., Opper, M.

Journal of the Royal Statistical Society B, 66, pages: 1-17, 3, 2004 (article)

Abstract
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem.A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters.We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer.We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution.We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes.This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets.We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.

PDF [BibTex]

PDF [BibTex]


no image
Feature Selection for Support Vector Machines Using Genetic Algorithms

Fröhlich, H., Chapelle, O., Schölkopf, B.

International Journal on Artificial Intelligence Tools (Special Issue on Selected Papers from the 15th IEEE International Conference on Tools with Artificial Intelligence 2003), 13(4):791-800, 2004 (article)

Web [BibTex]

Web [BibTex]


no image
Optical Imaging of the Spatiotemporal Dynamics of Cerebral Blood Flow and Oxidative Metabolism in the Rat Barrel Cortex

Weber, B., Burger, C., Wyss, M., von Schulthess, G., Scheffold, F., Buck, A.

European Journal of Neuroscience, 20(10):2664-2670, 2004 (article)

PDF [BibTex]

PDF [BibTex]


no image
Phenotypic Characterization of Human Chondrocyte Cell Line C-20/A4: A Comparison between Monolayer and Alginate Suspension Culture

Finger, F., Schorle, C., Söder, S., Zien, A., Goldring, M., Aigner, T.

Cells Tissues Organs, 178(2):65-77, 2004 (article)

Abstract
DNA microarray analysis was used to investigate the molecular phenotype of one of the first human chondrocyte cell lines, C-20/A4, derived from juvenile costal chondrocytes by immortalization with origin-defective simian virus 40 large T antigen. Clontech Human Cancer Arrays 1.2 and quantitative PCR were used to examine gene expression profiles of C-20/A4 cells cultured in the presence of serum in monolayer and alginate beads. In monolayer cultures, genes involved in cell proliferation were strongly upregulated compared to those expressed by human adult articular chondrocytes in primary culture. Of the cell cycle-regulated genes, only two, the CDK regulatory subunit and histone H4, were downregulated after culture in alginate beads, consistent with the ability of these cells to proliferate in suspension culture. In contrast, the expression of several genes that are involved in pericellular matrix formation, including MMP-14, COL6A1, fibronectin, biglycan and decorin, was upregulated when the C-20/A4 cells were transferred to suspension culture in alginate. Also, nexin-1, vimentin, and IGFBP-3, which are known to be expressed by primary chondrocytes, were differentially expressed in our study. Consistent with the proliferative phenotype of this cell line, few genes involved in matrix synthesis and turnover were highly expressed in the presence of serum. These results indicate that immortalized chondrocyte cell lines, rather than substituting for primary chondrocytes, may serve as models for extending findings on chondrocyte function not achievable by the use of primary chondrocytes.

[BibTex]

[BibTex]


no image
Kernel Methods and their Potential Use in Signal Processing

Perez-Cruz, F., Bousquet, O.

IEEE Signal Processing Magazine, (Special issue on Signal Processing for Mining), 2004 (article) Accepted

PostScript [BibTex]

PostScript [BibTex]


no image
Advanced Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, 2004 (talk)

PDF [BibTex]

PDF [BibTex]

2003


no image
Learning Control and Planning from the View of Control Theory and Imitation

Peters, J., Schaal, S.

NIPS Workshop "Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (talk)

Abstract
Learning control and planning in high dimensional continuous state-action systems, e.g., as needed in a humanoid robot, has so far been a domain beyond the applicability of generic planning techniques like reinforcement learning and dynamic programming. This talk describes an approach we have taken in order to enable complex robotics systems to learn to accomplish control tasks. Adaptive learning controllers equipped with statistical learning techniques can be used to learn tracking controllers -- missing state information and uncertainty in the state estimates are usually addressed by observers or direct adaptive control methods. Imitation learning is used as an ingredient to seed initial control policies whose output is a desired trajectory suitable to accomplish the task at hand. Reinforcement learning with stochastic policy gradients using a natural gradient forms the third component that allows refining the initial control policy until the task is accomplished. In comparison to general learning control, this approach is highly prestructured and thus more domain specific. However, it seems to be a theoretically clean and feasible strategy for control systems of the complexity that we need to address.

Web [BibTex]

2003

Web [BibTex]


no image
Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2

Finger, F., Schorle, C., Zien, A., Gebhard, P., Goldring, M., Aigner, T.

Arthritis & Rheumatism, 48(12):3395-3403, December 2003 (article)

[BibTex]

[BibTex]


no image
A Study on Rainfall - Runoff Models for Improving Ensemble Streamflow Prediction: 1. Rainfallrunoff Models Using Artificial Neural Networks

Jeong, D., Kim, Y., Cho, S., Shin, H.

Journal of the Korean Society of Civil Engineers, 23(6B):521-530, December 2003 (article)

Abstract
The previous ESP (Ensemble Streamflow Prediction) studies conducted in Korea reported that the modeling error is a major source of the ESP forecast error in winter and spring (i.e. dry seasons), and thus suggested that improving the rainfall-runoff model would be critical to obtain more accurate probabilistic forecasts with ESP. This study used two types of Artificial Neural Networks (ANN), such as a Single Neural Network (SNN) and an Ensemble Neural Networks (ENN), to improve the simulation capability of the rainfall-runoff model of the ESP forecasting system for the monthly inflow to the Daecheong dam. Applied for the first time to Korean hydrology, ENN combines the outputs of member models so that it can control the generalization error better than SNN. Because the dry and the flood season in Korea shows considerably different streamflow characteristics, this study calibrated the rainfall-runoff model separately for each season. Therefore, four rainfall-runoff models were developed according to the ANN types and the seasons. This study compared the ANN models with a conceptual rainfall-runoff model called TANK and verified that the ANN models were superior to TANK. Among the ANN models, ENN was more accurate than SNN. The ANN model performance was improved when the model was calibrated separately for the dry and the flood season. The best ANN model developed in this article will be incorporated into the ESP system to increase the forecast capability of ESP for the monthly inflow to the Daecheong dam.

[BibTex]

[BibTex]


no image
Quantitative Cerebral Blood Flow Measurements in the Rat Using a Beta-Probe and H215O

Weber, B., Spaeth, N., Wyss, M., Wild, D., Burger, C., Stanley, R., Buck, A.

Journal of Cerebral Blood Flow and Metabolism, 23(12):1455-1460, December 2003 (article)

Abstract
Beta-probes are a relatively new tool for tracer kinetic studies in animals. They are highly suited to evaluate new positron emission tomography tracers or measure physiologic parameters at rest and after some kind of stimulation or intervention. In many of these experiments, the knowledge of CBF is highly important. Thus, the purpose of this study was to evaluate the method of CBF measurements using a beta-probe and H215O. CBF was measured in the barrel cortex of eight rats at baseline and after acetazolamide challenge. Trigeminal nerve stimulation was additionally performed in five animals. In each category, three injections of 250 to 300 MBq H215O were performed at 10-minute intervals. Data were analyzed using a standard one-tissue compartment model (K1 = CBF, k2 = CBF/p, where p is the partition coefficient). Values for K1 were 0.35 plusminus 0.09, 0.58 plusminus 0.16, and 0.49 plusminus 0.03 mL dot min-1 dot mL-1 at rest, after acetazolamide challenge, and during trigeminal nerve stimulation, respectively. The corresponding values for k2 were 0.55 plusminus 0.12, 0.94 plusminus 0.16, and 0.85 plusminus 0.12 min-7, and for p were 0.64 plusminus 0.05, 0.61 plusminus 0.07, and 0.59 plusminus 0.06.The standard deviation of the difference between two successive experiments, a measure for the reproducibility of the method, was 10.1%, 13.0%, and 5.7% for K1, k2, and p, respectively. In summary, beta-probes in conjunction with H215O allow the reproducible quantitative measurement of CBF, although some systematic underestimation seems to occur, probably because of partial volume effects.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Recurrent neural networks from learning attractor dynamics

Schaal, S., Peters, J.

NIPS Workshop on RNNaissance: Recurrent Neural Networks, December 2003 (talk)

Abstract
Many forms of recurrent neural networks can be understood in terms of dynamic systems theory of difference equations or differential equations. Learning in such systems corresponds to adjusting some internal parameters to obtain a desired time evolution of the network, which can usually be characterized in term of point attractor dynamics, limit cycle dynamics, or, in some more rare cases, as strange attractor or chaotic dynamics. Finding a stable learning process to adjust the open parameters of the network towards shaping the desired attractor type and basin of attraction has remain a complex task, as the parameter trajectories during learning can lead the system through a variety of undesirable unstable behaviors, such that learning may never succeed. In this presentation, we review a recently developed learning framework for a class of recurrent neural networks that employs a more structured network approach. We assume that the canonical system behavior is known a priori, e.g., it is a point attractor or a limit cycle. With either supervised learning or reinforcement learning, it is possible to acquire the transformation from a simple representative of this canonical behavior (e.g., a 2nd order linear point attractor, or a simple limit cycle oscillator) to the desired highly complex attractor form. For supervised learning, one shot learning based on locally weighted regression techniques is possible. For reinforcement learning, stochastic policy gradient techniques can be employed. In any case, the recurrent network learned by these methods inherits the stability properties of the simple dynamic system that underlies the nonlinear transformation, such that stability of the learning approach is not a problem. We demonstrate the success of this approach for learning various skills on a humanoid robot, including tasks that require to incorporate additional sensory signals as coupling terms to modify the recurrent network evolution on-line.

Web [BibTex]

Web [BibTex]


no image
Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation

Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.

Journal of Machine Learning Research, 4(7-8):1319-1338, November 2003 (article)

Abstract
We propose two methods that reduce the post-nonlinear blind source separation problem (PNL-BSS) to a linear BSS problem. The first method is based on the concept of maximal correlation: we apply the alternating conditional expectation (ACE) algorithm--a powerful technique from non-parametric statistics--to approximately invert the componentwise nonlinear functions. The second method is a Gaussianizing transformation, which is motivated by the fact that linearly mixed signals before nonlinear transformation are approximately Gaussian distributed. This heuristic, but simple and efficient procedure works as good as the ACE method. Using the framework provided by ACE, convergence can be proven. The optimal transformations obtained by ACE coincide with the sought-after inverse functions of the nonlinearities. After equalizing the nonlinearities, temporal decorrelation separation (TDSEP) allows us to recover the source signals. Numerical simulations testing "ACE-TD" and "Gauss-TD" on realistic examples are performed with excellent results.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy

Becker, A., Chen, J., Zien, A., Sochivko, D., Normann, S., Schramm, J., Elger, C., Wiestler, O., Blumcke, I.

European Journal of Neuroscience, 18(10):2792-2802, November 2003 (article)

Abstract
Epileptic activity evokes profound alterations of hippocampal organization and function. Genomic responses may reflect immediate consequences of excitatory stimulation as well as sustained molecular processes related to neuronal plasticity and structural remodeling. Using oligonucleotide microarrays with 8799 sequences, we determined subregional gene expression profiles in rats subjected to pilocarpine-induced epilepsy (U34A arrays, Affymetrix, Santa Clara, CA, USA; P < 0.05, twofold change, n = 3 per stage). Patterns of gene expression corresponded to distinct stages of epilepsy development. The highest number of differentially expressed genes (dentate gyrus, approx. 400 genes and CA1, approx. 700 genes) was observed 3 days after status epilepticus. The majority of up-regulated genes was associated with mechanisms of cellular stress and injury - 14 days after status epilepticus, numerous transcription factors and genes linked to cytoskeletal and synaptic reorganization were differentially expressed and, in the stage of chronic spontaneous seizures, distinct changes were observed in the transcription of genes involved in various neurotransmission pathways and between animals with low vs. high seizure frequency. A number of genes (n = 18) differentially expressed during the chronic epileptic stage showed corresponding expression patterns in hippocampal subfields of patients with pharmacoresistant temporal lobe epilepsy (n = 5 temporal lobe epilepsy patients; U133A microarrays, Affymetrix; covering 22284 human sequences). These data provide novel insights into the molecular mechanisms of epileptogenesis and seizure-associated cellular and structural remodeling of the hippocampus.

[BibTex]

[BibTex]


no image
Concentration Inequalities for Sub-Additive Functions Using the Entropy Method

Bousquet, O.

Stochastic Inequalities and Applications, 56, pages: 213-247, Progress in Probability, (Editors: Giné, E., C. Houdré and D. Nualart), November 2003 (article)

Abstract
We obtain exponential concentration inequalities for sub-additive functions of independent random variables under weak conditions on the increments of those functions, like the existence of exponential moments for these increments. As a consequence of these general inequalities, we obtain refinements of Talagrand's inequality for empirical processes and new bounds for randomized empirical processes. These results are obtained by further developing the entropy method introduced by Ledoux.

PostScript [BibTex]

PostScript [BibTex]


no image
YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1), is up regulated in osteoarthritic chondrocytes

Knorr, T., Obermayr, F., Bartnik, E., Zien, A., Aigner, T.

Annals of the Rheumatic Diseases, 62(10):995-998, October 2003 (article)

Abstract
OBJECTIVE: To investigate quantitatively the mRNA expression levels of YKL-40, an established marker of rheumatoid and osteoarthritic cartilage degeneration in synovial fluid and serum, and a closely related molecule YKL-39, in articular chondrocytes. METHODS: cDNA array and online quantitative polymerase chain reaction (PCR) were used to measure mRNA expression levels of YKL-39 and YKL-40 in chondrocytes in normal, early degenerative, and late stage osteoarthritic cartilage samples. RESULTS: Expression analysis showed high levels of both proteins in normal articular chondrocytes, with lower levels of YKL-39 than YKL-40. Whereas YKL-40 was significantly down regulated in late stage osteoarthritic chondrocytes, YKL-39 was significantly up regulated. In vitro both YKLs were down regulated by interleukin 1beta. CONCLUSIONS: The up regulation of YKL-39 in osteoarthritic cartilage suggests that YKL-39 may be a more accurate marker of chondrocyte activation than YKL-40, although it has yet to be established as a suitable marker in synovial fluid and serum. The decreased expression of YKL-40 by osteoarthritic chondrocytes is surprising as increased levels have been reported in rheumatoid and osteoarthritic synovial fluid, where it may derive from activated synovial cells or osteophytic tissue or by increased matrix destruction in the osteoarthritic joint. YKL-39 and YKL-40 are potentially interesting marker molecules for arthritic joint disease because they are abundantly expressed by both normal and osteoarthritic chondrocytes.

[BibTex]

[BibTex]


no image
Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Remarks on Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory, Capacity and Complexity

Schölkopf, B.

Complexity, 8(4):87-94, July 2003 (article)

Abstract
We give an exposition of the ideas of statistical learning theory, followed by a discussion of how a reinterpretation of the insights of learning theory could potentially also benefit our understanding of a certain notion of complexity.

Web DOI [BibTex]


no image
Dealing with large Diagonals in Kernel Matrices

Weston, J., Schölkopf, B., Eskin, E., Leslie, C., Noble, W.

Annals of the Institute of Statistical Mathematics, 55(2):391-408, June 2003 (article)

Abstract
In kernel methods, all the information about the training data is contained in the Gram matrix. If this matrix has large diagonal values, which arises for many types of kernels, then kernel methods do not perform well: We propose and test several methods for dealing with this problem by reducing the dynamic range of the matrix while preserving the positive definiteness of the Hessian of the quadratic programming problem that one has to solve when training a Support Vector Machine, which is a common kernel approach for pattern recognition.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The em Algorithm for Kernel Matrix Completion with Auxiliary Data

Tsuda, K., Akaho, S., Asai, K.

Journal of Machine Learning Research, 4, pages: 67-81, May 2003 (article)

PDF [BibTex]

PDF [BibTex]


no image
Constructing Descriptive and Discriminative Non-linear Features: Rayleigh Coefficients in Kernel Feature Spaces

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):623-628, May 2003 (article)

Abstract
We incorporate prior knowledge to construct nonlinear algorithms for invariant feature extraction and discrimination. Employing a unified framework in terms of a nonlinearized variant of the Rayleigh coefficient, we propose nonlinear generalizations of Fisher‘s discriminant and oriented PCA using support vector kernel functions. Extensive simulations show the utility of our approach.

DOI [BibTex]

DOI [BibTex]


no image
Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

Neural Computation, 15(5):1089-1124, May 2003 (article)

Abstract
We propose kTDSEP, a kernel-based algorithm for nonlinear blind source separation (BSS). It combines complementary research fields: kernel feature spaces and BSS using temporal information. This yields an efficient algorithm for nonlinear BSS with invertible nonlinearity. Key assumptions are that the kernel feature space is chosen rich enough to approximate the nonlinearity and that signals of interest contain temporal information. Both assumptions are fulfilled for a wide set of real-world applications. The algorithm works as follows: First, the data are (implicitly) mapped to a high (possibly infinite)—dimensional kernel feature space. In practice, however, the data form a smaller submanifold in feature space—even smaller than the number of training data points—a fact that has already been used by, for example, reduced set techniques for support vector machines. We propose to adapt to this effective dimension as a preprocessing step and to construct an orthonormal basis of this submanifold. The latter dimension-reduction step is essential for making the subsequent application of BSS methods computationally and numerically tractable. In the reduced space, we use a BSS algorithm that is based on second-order temporal decorrelation. Finally, we propose a selection procedure to obtain the original sources from the extracted nonlinear components automatically. Experiments demonstrate the excellent performance and efficiency of our kTDSEP algorithm for several problems of nonlinear BSS and for more than two sources.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]