Header logo is ei



no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

arXiv DOI [BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Counterfactual Mean Embedding

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukatat, S.

Journal of Machine Learning Research, 2020 (article) Accepted

[BibTex]

[BibTex]

2019


Semi-supervised learning, causality, and the conditional cluster assumption
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster)

Poster PDF link (url) [BibTex]

2019

Poster PDF link (url) [BibTex]


Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks

von Kügelgen, J., Rubenstein, P. K., Schölkopf, B., Weller, A.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster)

arXiv Poster link (url) [BibTex]

arXiv Poster link (url) [BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

DOI [BibTex]

DOI [BibTex]


no image
SPINDLE: End-to-end learning from EEG/EMG to extrapolate animal sleep scoring across experimental settings, labs and species

Miladinovic, D., Muheim, C., Bauer, S., Spinnler, A., Noain, D., Bandarabadi, M., Gallusser, B., Krummenacher, G., Baumann, C., Adamantidis, A., Brown, S. A., Buhmann, J. M.

PLOS Computational Biology, 15(4):1-30, Public Library of Science, April 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

DOI [BibTex]

DOI [BibTex]


Multidimensional Contrast Limited Adaptive Histogram Equalization
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
TD-regularized actor-critic methods

Parisi, S., Tangkaratt, V., Peters, J., Khan, M. E.

Machine Learning, 108(8):1467-1501, (Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, and Antti Ukkonen), 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic solutions to ordinary differential equations as nonlinear Bayesian filtering: a new perspective

Tronarp, F., Kersting, H., Särkkä, S. H. P.

Statistics and Computing, 29(6):1297-1315, 2019 (article)

DOI [BibTex]


Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

Arxiv Video [BibTex]


no image
Perception of temporal dependencies in autoregressive motion

Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

[BibTex]


no image
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise

Pfister*, N., Weichwald*, S., Bühlmann, P., Schölkopf, B.

Journal of Machine Learning Research, 20(147):1-50, 2019, *equal contribution (article)

ArXiv Code Project page PDF link (url) Project Page Project Page [BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 116(10):3988-3993, National Academy of Sciences, 2019 (article)

link (url) DOI Project Page Project Page [BibTex]

link (url) DOI Project Page Project Page [BibTex]


no image
Entropic Regularization of Markov Decision Processes

Belousov, B., Peters, J.

Entropy, 21(7):674, 2019 (article)

link (url) DOI [BibTex]


no image
Searchers adjust their eye-movement dynamics to target characteristics in natural scenes

Rothkegel, L., Schütt, H., Trukenbrod, H., Wichmann, F. A., Engbert, R.

Scientific Reports, 9(1635), 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Spatial statistics for gaze patterns in scene viewing: Effects of repeated viewing

Trukenbrod, H. A., Barthelmé, S., Wichmann, F. A., Engbert, R.

Journal of Vision, 19(6):19, 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Quantum mean embedding of probability distributions

Kübler, J. M., Muandet, K., Schölkopf, B.

Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., Munoz-Mari, J., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 10(2553), 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Analysis of cause-effect inference by comparing regression errors

Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.

PeerJ Computer Science, 5, pages: e169, 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning Intention Aware Online Adaptation of Movement Primitives

Koert, D., Pajarinen, J., Schotschneider, A., Trick, S., Rothkopf, C., Peters, J.

IEEE Robotics and Automation Letters, 4(4):3719-3726, 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Spread-spectrum magnetic resonance imaging

Scheffler, K., Loktyushin, A., Bause, J., Aghaeifar, A., Steffen, T., Schölkopf, B.

Magnetic Resonance in Medicine, 82(3):877-885, 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
How Cognitive Models of Human Body Experience Might Push Robotics

Schürmann, T., Mohler, B. J., Peters, J., Beckerle, P.

Frontiers in Neurorobotics, 13(14), 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Phenomenal Causality and Sensory Realism

Bruijns, S. A., Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

[BibTex]

[BibTex]


no image
Dense connectomic reconstruction in layer 4 of the somatosensory cortex

Motta, A., Berning, M., Boergens, K. M., Staffler, B., Beining, M., Loomba, S., Hennig, P., Wissler, H., Helmstaedter, M.

Science, 366(6469):eaay3134, American Association for the Advancement of Science, 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning Trajectory Distributions for Assisted Teleoperation and Path Planning

Ewerton, M., Arenz, O., Maeda, G., Koert, D., Kolev, Z., Takahashi, M., Peters, J.

Frontiers in Robotics and AI, 6, pages: 89, 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Brainglance: Visualizing Group Level MRI Data at One Glance

Stelzer, J., Lacosse, E., Bause, J., Scheffler, K., Lohmann, G.

Frontiers in Neuroscience, 13(972), 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces

Klus, S., Schuster, I., Muandet, K.

Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Workshops of the seventh international brain-computer interface meeting: not getting lost in translation

Huggins, J. E., Guger, C., Aarnoutse, E., Allison, B., Anderson, C. W., Bedrick, S., Besio, W., Chavarriaga, R., Collinger, J. L., Do, A. H., Herff, C., Hohmann, M., Kinsella, M., Lee, K., Lotte, F., Müller-Putz, G., Nijholt, A., Pels, E., Peters, B., Putze, F., Rupp, R. S. G., Scott, S., Tangermann, M., Tubig, P., Zander, T.

Brain-Computer Interfaces, 6(3):71-101, Taylor & Francis, 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Compatible natural gradient policy search

Pajarinen, J., Thai, H. L., Akrour, R., Peters, J., Neumann, G.

Machine Learning, 108(8):1443-1466, (Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, and Antti Ukkonen), 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Learning stable and predictive structures in kinetic systems

Pfister, N., Bauer, S., Peters, J.

Proceedings of the National Academy of Sciences (PNAS), 116(51):25405-25411, 2019 (article)

DOI [BibTex]

DOI [BibTex]


no image
Fairness Constraints: A Flexible Approach for Fair Classification

Zafar, M. B., Valera, I., Gomez-Rodriguez, M., Krishna, P.

Journal of Machine Learning Research, 20(75):1-42, 2019 (article)

link (url) [BibTex]

link (url) [BibTex]

2010


no image
Similarities in resting state and feature-driven activity: Non-parametric evaluation of human fMRI

Shelton, J., Blaschko, M., Gretton, A., Müller, J., Fischer, E., Bartels, A.

NIPS Workshop on Learning and Planning from Batch Time Series Data, December 2010 (poster)

PDF Web [BibTex]

2010

PDF Web [BibTex]


no image
Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis

Besserve, M., Schölkopf, B., Logothetis, N., Panzeri, S.

Journal of Computational Neuroscience, 29(3):547-566, December 2010 (article)

PDF DOI [BibTex]


no image
Tackling Box-Constrained Optimization via a New Projected Quasi-Newton Approach

Kim, D., Sra, S., Dhillon, I.

SIAM Journal on Scientific Computing, 32(6):3548-3563 , December 2010 (article)

Abstract
Numerous scientific applications across a variety of fields depend on box-constrained convex optimization. Box-constrained problems therefore continue to attract research interest. We address box-constrained (strictly convex) problems by deriving two new quasi-Newton algorithms. Our algorithms are positioned between the projected-gradient [J. B. Rosen, J. SIAM, 8 (1960), pp. 181–217] and projected-Newton [D. P. Bertsekas, SIAM J. Control Optim., 20 (1982), pp. 221–246] methods. We also prove their convergence under a simple Armijo step-size rule. We provide experimental results for two particular box-constrained problems: nonnegative least squares (NNLS), and nonnegative Kullback–Leibler (NNKL) minimization. For both NNLS and NNKL our algorithms perform competitively as compared to well-established methods on medium-sized problems; for larger problems our approach frequently outperforms the competition.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Algorithmen zum Automatischen Erlernen von Motorfähigkeiten

Peters, J., Kober, J., Schaal, S.

at - Automatisierungstechnik, 58(12):688-694, December 2010 (article)

Abstract
Robot learning methods which allow autonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algorithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structures for task representation and execution.

Web DOI [BibTex]

Web DOI [BibTex]


no image
PAC-Bayesian Analysis of Co-clustering and Beyond

Seldin, Y., Tishby, N.

Journal of Machine Learning Research, 11, pages: 3595-3646, December 2010 (article)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Augmentation of fMRI Data Analysis using Resting State Activity and Semi-supervised Canonical Correlation Analysis

Shelton, JA., Blaschko, MB., Bartels, A.

NIPS Women in Machine Learning Workshop (WiML), December 2010 (poster)

Abstract
Resting state activity is brain activation that arises in the absence of any task, and is usually measured in awake subjects during prolonged fMRI scanning sessions where the only instruction given is to close the eyes and do nothing. It has been recognized in recent years that resting state activity is implicated in a wide variety of brain function. While certain networks of brain areas have different levels of activation at rest and during a task, there is nevertheless significant similarity between activations in the two cases. This suggests that recordings of resting state activity can be used as a source of unlabeled data to augment kernel canonical correlation analysis (KCCA) in a semisupervised setting. We evaluate this setting empirically yielding three main results: (i) KCCA tends to be improved by the use of Laplacian regularization even when no additional unlabeled data are available, (ii) resting state data seem to have a similar marginal distribution to that recorded during the execution of a visual processing task implying largely similar types of activation, and (iii) this source of information can be broadly exploited to improve the robustness of empirical inference in fMRI studies, an inherently data poor domain.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Gaussian Processes for Machine Learning (GPML) Toolbox

Rasmussen, C., Nickisch, H.

Journal of Machine Learning Research, 11, pages: 3011-3015, November 2010 (article)

Abstract
The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace's method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.

Web [BibTex]

Web [BibTex]


no image
Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution

Armache, J-P., Jarasch, A., Anger, AM., Villa, E., Becker, T., Bhushan, S., Jossinet, F., Habeck, M., Dindar, G., Franckenberg, S., Marquez, V., Mielke, T., Thomm, M., Berninghausen, O., Beatrix, B., Söding, J., Westhof, E., Wilson, DN., Beckmann, R.

Proceedings of the National Academy of Sciences of the United States of America, 107(46):19748-19753, November 2010 (article)

Abstract
Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution. This map, together with a 6.1-Å map of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES–ES and r-protein–ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Policy gradient methods

Peters, J.

Scholarpedia, 5(11):3698, November 2010 (article)

Abstract
Policy gradient methods are a type of reinforcement learning techniques that rely upon optimizing parametrized policies with respect to the expected return (long-term cumulative reward) by gradient descent. They do not suffer from many of the problems that have been marring traditional reinforcement learning approaches such as the lack of guarantees of a value function, the intractability problem resulting from uncertain state information and the complexity arising from continuous states & actions.

Web DOI [BibTex]

Web DOI [BibTex]