Header logo is ei


2018


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

PDF [BibTex]

2018

PDF [BibTex]


no image
Optimal Trajectory Generation and Learning Control for Robot Table Tennis

Koc, O.

Technical University Darmstadt, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
Distribution-Dissimilarities in Machine Learning

Simon-Gabriel, C. J.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
Domain Adaptation Under Causal Assumptions

Lechner, T.

Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

[BibTex]

[BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning for High-Speed Robotics with Muscular Actuation

Guist, S.

Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

[BibTex]

[BibTex]


no image
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications

Schober, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
A machine learning approach to taking EEG-based computer interfaces out of the lab

Jayaram, V.

Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]

2014


no image
Modeling the polygenic architecture of complex traits

Rakitsch, Barbara

Eberhard Karls Universität Tübingen, November 2014 (phdthesis)

[BibTex]

2014

[BibTex]


no image
A Novel Causal Inference Method for Time Series

Shajarisales, N.

Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (mastersthesis)

PDF [BibTex]

PDF [BibTex]


no image
A global analysis of extreme events and consequences for the terrestrial carbon cycle

Zscheischler, J.

Diss. No. 22043, ETH Zurich, Switzerland, ETH Zurich, Switzerland, 2014 (phdthesis)

[BibTex]

[BibTex]


no image
Development of advanced methods for improving astronomical images

Schmeißer, N.

Eberhard Karls Universität Tübingen, Germany, Eberhard Karls Universität Tübingen, Germany, 2014 (diplomathesis)

[BibTex]

[BibTex]


no image
The Feasibility of Causal Discovery in Complex Systems: An Examination of Climate Change Attribution and Detection

Lacosse, E.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)

[BibTex]

[BibTex]


no image
Causal Discovery in the Presence of Time-Dependent Relations or Small Sample Size

Huang, B.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2014 (mastersthesis)

[BibTex]

[BibTex]


no image
Analysis of Distance Functions in Graphs

Alamgir, M.

University of Hamburg, Germany, University of Hamburg, Germany, 2014 (phdthesis)

[BibTex]

[BibTex]

2009


no image
Kernel Learning Approaches for Image Classification

Gehler, PV.

Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

Abstract
This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.

PDF [BibTex]

2009

PDF [BibTex]


no image
A PAC-Bayesian Approach to Structure Learning

Seldin, Y.

Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, September 2009 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery

Blaschko, MB.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Motor Control and Learning in Table Tennis

Mülling, K.

Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

[BibTex]

[BibTex]


no image
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs

Drewe, P.

Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

[BibTex]

[BibTex]


no image
Learning with Structured Data: Applications to Computer Vision

Nowozin, S.

Technische Universität Berlin, Germany, 2009 (phdthesis)

PDF [BibTex]

PDF [BibTex]

2002


no image
Nonlinear Multivariate Analysis with Geodesic Kernels

Kuss, M.

Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)

GZIP [BibTex]

2002

GZIP [BibTex]


no image
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms

Bousquet, O.

Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted

Abstract
New classification algorithms based on the notion of 'margin' (e.g. Support Vector Machines, Boosting) have recently been developed. The goal of this thesis is to better understand how they work, via a study of their theoretical performance. In order to do this, a general framework for real-valued classification is proposed. In this framework, it appears that the natural tools to use are Concentration Inequalities and Empirical Processes Theory. Thanks to an adaptation of these tools, a new measure of the size of a class of functions is introduced, which can be computed from the data. This allows, on the one hand, to better understand the role of eigenvalues of the kernel matrix in Support Vector Machines, and on the other hand, to obtain empirical model selection criteria.

PostScript [BibTex]


no image
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge

Chapelle, O.

Biologische Kybernetik, 2002 (phdthesis)

Abstract
This thesis presents a theoretical and practical study of Support Vector Machines (SVM) and related learning algorithms. In a first part, we introduce a new induction principle from which SVMs can be derived, but some new algorithms are also presented in this framework. In a second part, after studying how to estimate the generalization error of an SVM, we suggest to choose the kernel parameters of an SVM by minimizing this estimate. Several applications such as feature selection are presented. Finally the third part deals with the incoporation of prior knowledge in a learning algorithm and more specifically, we studied the case of known invariant transormations and the use of unlabeled data.

GZIP [BibTex]