Rojas-Carulla, M.
Learning Transferable Representations
University of Cambridge, UK, 2019 (phdthesis)
Gu, S.
Sample-efficient deep reinforcement learning for continuous control
University of Cambridge, UK, 2019 (phdthesis)
Ścibior*, A.
Formally justified and modular Bayesian inference for probabilistic programs
University of Cambridge, UK, 2019 (phdthesis)
Xu, J.
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing
Technical University of Munich, Germany, 2019 (mastersthesis)
Weichwald, S.
Pragmatism and Variable Transformations in Causal Modelling
ETH Zurich, 2019 (phdthesis)
Katiyar, P.
Quantification of tumor heterogeneity using PET/MRI and machine learning
Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)
Bauer, M.
Advances in Probabilistic Modelling: Sparse Gaussian Processes, Autoencoders, and Few-shot Learning
University of Cambridge, UK, 2019 (phdthesis)
Bustamante, S.
A virtual reality environment for experiments in assistive robotics and neural interfaces
Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
Koc, O.
Optimal Trajectory Generation and Learning Control for Robot Table Tennis
Technical University Darmstadt, Germany, 2018 (phdthesis)
Gebhard, T.
On the Applicability of Machine Learning to Aid the Search for Gravitational Waves at the LIGO Experiment
Karlsruhe Institute of Technology, Germany, 2018 (mastersthesis)
Simon-Gabriel, C. J.
Distribution-Dissimilarities in Machine Learning
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
Lechner, T.
Domain Adaptation Under Causal Assumptions
Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
Suter, R.
A Causal Perspective on Deep Representation Learning
ETH Zurich, 2018 (mastersthesis)
Mahsereci, M.
Probabilistic Approaches to Stochastic Optimization
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
Zabel, S.
Improving Tissue Differentiation based on Optical Emission Spectroscopy for Guided Electrosurgical Tumor Resection with Machine Learning
Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)
Guist, S.
Reinforcement Learning for High-Speed Robotics with Muscular Actuation
Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)
Schober, M.
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications
Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
Jayaram, V.
A machine learning approach to taking EEG-based computer interfaces out of the lab
Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)
Klenske, E. D.
Nonparametric Disturbance Correction and Nonlinear Dual Control
(24098), ETH Zurich, 2017 (phdthesis)
Emde, T.
Development and Evaluation of a Portable BCI System for Remote Data Acquisition
Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)
Fomina, T.
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis
Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)
Geiger, P.
Causal models for decision making via integrative inference
University of Stuttgart, Germany, 2017 (phdthesis)
Sücker, K.
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation
Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)
Schober, M.
Camera-specific Image Denoising
Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)
Burger, HC.
Modelling and Learning Approaches to Image Denoising
Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)
Lippert, C.
Linear mixed models for genome-wide association studies
University of Tübingen, Germany, 2013 (phdthesis)
Mülling, K.
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis
Technical University Darmstadt, Germany, 2013 (phdthesis)
Wang, Z.
Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Models
Technical University Darmstadt, Germany, 2013 (phdthesis)
Jäkel, F.
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization
Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)
Jegelka, S.
Statistical Learning Theory Approaches to Clustering
Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)
Biessmann, F.
Error Correcting Codes for the P300 Visual Speller
Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2007 (diplomathesis)
Langovoy, MA.
Data-driven goodness-of-fit tests
Biologische Kybernetik, Georg-August-Universität Göttingen, Göttingen, Germany, July 2007 (phdthesis)
Görür, D.
Nonparametric Bayesian Discrete Latent Variable Models for Unsupervised Learning
Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, April 2007, published online (phdthesis)
Eichhorn, J.
Applications of Kernel Machines to Structured Data
Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2007, passed with "sehr gut", published online (phdthesis)
Sinz, FH.
A priori Knowledge from Non-Examples
Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, March 2007 (diplomathesis)
Pfingsten, T.
Machine Learning for Mass Production and Industrial Engineering
Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, February 2007 (phdthesis)
Raths, C.
Development of a Brain-Computer Interface Approach Based on Covert Attention to Tactile Stimuli
University of Tübingen, Germany, University of Tübingen, Germany, January 2007 (diplomathesis)
Hofmann, M.
A Machine Learning Approach for Estimating the Attenuation Map for a Combined PET/MR Scanner
Biologische Kybernetik, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, 2007 (diplomathesis)
Peters, J.
Machine Learning of Motor Skills for Robotics
University of Southern California, Los Angeles, CA, USA, University of Southern California, Los Angeles, CA, USA, 2007, clmc (phdthesis)
Kuss, M.
Nonlinear Multivariate Analysis with Geodesic Kernels
Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)
Bousquet, O.
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms
Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted
Chapelle, O.
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
Biologische Kybernetik, 2002 (phdthesis)