Header logo is ei


2015


no image
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies

Grimm, Dominik

Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

[BibTex]

2015

[BibTex]


no image
Causal Discovery Beyond Conditional Independences

Sgouritsa, E.

Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

link (url) [BibTex]

link (url) [BibTex]


no image
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding

Muandet, K.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

[BibTex]

[BibTex]


no image
Machine Learning Approaches to Image Deconvolution

Schuler, C.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

[BibTex]

[BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A.

University of Tübingen, Germany, May 2015 (phdthesis)

[BibTex]

[BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
Sequential Image Deconvolution Using Probabilistic Linear Algebra

Gao, M.

Technical University of Munich, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
Causal Inference in Neuroimaging

Casarsa de Azevedo, L.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
The effect of frowning on attention

Ibarra Chaoul, A.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]

2013


no image
Camera-specific Image Denoising

Schober, M.

Eberhard Karls Universität Tübingen, Germany, October 2013 (diplomathesis)

PDF [BibTex]

2013

PDF [BibTex]


no image
Modelling and Learning Approaches to Image Denoising

Burger, HC.

Eberhard Karls Universität Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


no image
Linear mixed models for genome-wide association studies

Lippert, C.

University of Tübingen, Germany, 2013 (phdthesis)

[BibTex]

[BibTex]


no image
Modeling and Learning Complex Motor Tasks: A case study on Robot Table Tennis

Mülling, K.

Technical University Darmstadt, Germany, 2013 (phdthesis)

[BibTex]

2007


no image
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization

Jäkel, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)

PDF [BibTex]

2007

PDF [BibTex]


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Error Correcting Codes for the P300 Visual Speller

Biessmann, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2007 (diplomathesis)

Abstract
The aim of brain-computer interface (BCI) research is to establish a communication system based on intentional modulation of brain activity. This is accomplished by classifying patterns of brain ac- tivity, volitionally induced by the user. The BCI presented in this study is based on a classical paradigm as proposed by (Farwell and Donchin, 1988), the P300 visual speller. Recording electroencephalo- grams (EEG) from the scalp while presenting letters successively to the user, the speller can infer from the brain signal which letter the user was focussing on. Since EEG recordings are noisy, usually many repetitions are needed to detect the correct letter. The focus of this study was to improve the accuracy of the visual speller applying some basic principles from information theory: Stimulus sequences of the speller have been modified into error-correcting codes. Additionally a language model was incorporated into the probabilistic letter de- coder. Classification of single EEG epochs was less accurate using error correcting codes. However, the novel code could compensate for that such that overall, letter accuracies were as high as or even higher than for classical stimulus codes. In particular at high noise levels, error-correcting decoding achieved higher letter accuracies.

PDF [BibTex]

PDF [BibTex]


no image
Data-driven goodness-of-fit tests

Langovoy, MA.

Biologische Kybernetik, Georg-August-Universität Göttingen, Göttingen, Germany, July 2007 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Nonparametric Bayesian Discrete Latent Variable Models for Unsupervised Learning

Görür, D.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, April 2007, published online (phdthesis)

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Applications of Kernel Machines to Structured Data

Eichhorn, J.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2007, passed with "sehr gut", published online (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
A priori Knowledge from Non-Examples

Sinz, FH.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, March 2007 (diplomathesis)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning for Mass Production and Industrial Engineering

Pfingsten, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, February 2007 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Development of a Brain-Computer Interface Approach Based on Covert Attention to Tactile Stimuli

Raths, C.

University of Tübingen, Germany, University of Tübingen, Germany, January 2007 (diplomathesis)

[BibTex]

[BibTex]


no image
A Machine Learning Approach for Estimating the Attenuation Map for a Combined PET/MR Scanner

Hofmann, M.

Biologische Kybernetik, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, 2007 (diplomathesis)

[BibTex]

[BibTex]


no image
Machine Learning of Motor Skills for Robotics

Peters, J.

University of Southern California, Los Angeles, CA, USA, University of Southern California, Los Angeles, CA, USA, 2007, clmc (phdthesis)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can accomplish a multitude of different tasks, triggered by environmental context or higher level instruction. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning and human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this thesis, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting. As a theoretical foundation, we first study a general framework to generate control laws for real robots with a particular focus on skills represented as dynamical systems in differential constraint form. We present a point-wise optimal control framework resulting from a generalization of Gauss' principle and show how various well-known robot control laws can be derived by modifying the metric of the employed cost function. The framework has been successfully applied to task space tracking control for holonomic systems for several different metrics on the anthropomorphic SARCOS Master Arm. In order to overcome the limiting requirement of accurate robot models, we first employ learning methods to find learning controllers for task space control. However, when learning to execute a redundant control problem, we face the general problem of the non-convexity of the solution space which can force the robot to steer into physically impossible configurations if supervised learning methods are employed without further consideration. This problem can be resolved using two major insights, i.e., the learning problem can be treated as locally convex and the cost function of the analytical framework can be used to ensure global consistency. Thus, we derive an immediate reinforcement learning algorithm from the expectation-maximization point of view which leads to a reward-weighted regression technique. This method can be used both for operational space control as well as general immediate reward reinforcement learning problems. We demonstrate the feasibility of the resulting framework on the problem of redundant end-effector tracking for both a simulated 3 degrees of freedom robot arm as well as for a simulated anthropomorphic SARCOS Master Arm. While learning to execute tasks in task space is an essential component to a general framework to motor skill learning, learning the actual task is of even higher importance, particularly as this issue is more frequently beyond the abilities of analytical approaches than execution. We focus on the learning of elemental tasks which can serve as the "building blocks of movement generation", called motor primitives. Motor primitives are parameterized task representations based on splines or nonlinear differential equations with desired attractor properties. While imitation learning of parameterized motor primitives is a relatively well-understood problem, the self-improvement by interaction of the system with the environment remains a challenging problem, tackled in the fourth chapter of this thesis. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and outline both established and novel algorithms for the gradient-based improvement of parameterized policies. We compare these algorithms in the context of motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm. In conclusion, in this thesis, we have contributed a general framework for analytically computing robot control laws which can be used for deriving various previous control approaches and serves as foundation as well as inspiration for our learning algorithms. We have introduced two classes of novel reinforcement learning methods, i.e., the Natural Actor-Critic and the Reward-Weighted Regression algorithm. These algorithms have been used in order to replace the analytical components of the theoretical framework by learned representations. Evaluations have been performed on both simulated and real robot arms.

[BibTex]

[BibTex]

2005


no image
Extension to Kernel Dependency Estimation with Applications to Robotics

BakIr, G.

Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)

Abstract
Kernel Dependency Estimation(KDE) is a novel technique which was designed to learn mappings between sets without making assumptions on the type of the involved input and output data. It learns the mapping in two stages. In a first step, it tries to estimate coordinates of a feature space representation of elements of the set by solving a high dimensional multivariate regression problem in feature space. Following this, it tries to reconstruct the original representation given the estimated coordinates. This thesis introduces various algorithmic extensions to both stages in KDE. One of the contributions of this thesis is to propose a novel linear regression algorithm that explores low-dimensional subspaces during learning. Furthermore various existing strategies for reconstructing patterns from feature maps involved in KDE are discussed and novel pre-image techniques are introduced. In particular, pre-image techniques for data-types that are of discrete nature such as graphs and strings are investigated. KDE is then explored in the context of robot pose imitation where the input is a an image with a human operator and the output is the robot articulated variables. Thus, using KDE, robot pose imitation is formulated as a regression problem.

PDF PDF [BibTex]

2005

PDF PDF [BibTex]


no image
Geometrical aspects of statistical learning theory

Hein, M.

Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Implicit Surfaces For Modelling Human Heads

Steinke, F.

Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)

[BibTex]

[BibTex]


no image
Machine Learning Methods for Brain-Computer Interdaces

Lal, TN.

Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Liver Perfusion using Level Set Methods

Nowozin, S.

Biologische Kybernetik, Shanghai JiaoTong University, Shanghai, China, July 2005 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Discriminative Methods for Label Sequence Learning

Altun, Y.

Brown University, Providence, RI, USA, May 2005 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain

Tanner, TG.

Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)

Abstract
A common task in psychophysics is to measure the psychometric function. A psychometric function can be described by its shape and four parameters: offset or threshold, slope or width, false alarm rate or chance level and miss or lapse rate. Depending on the parameters of interest some points on the psychometric function may be more informative than others. Adaptive methods attempt to place trials on the most informative points based on the data collected in previous trials. A new Bayesian adaptive psychometric method placing trials by minimising the expected entropy of the posterior probabilty dis- tribution over a set of possible stimuli is introduced. The method is more flexible, faster and at least as efficient as the established method (Kontsevich and Tyler, 1999). Comparably accurate (2dB) threshold and slope estimates can be obtained after about 30 and 500 trials, respectively. By using a dynamic termination criterion the efficiency can be further improved. The method can be applied to all experimental designs including yes/no designs and allows acquisition of any set of free parameters. By weighting the importance of parameters one can include nuisance parameters and adjust the relative expected errors. Use of nuisance parameters may lead to more accurate estimates than assuming a guessed fixed value. Block designs are supported and do not harm the performance if a sufficient number of trials are performed. The method was evaluated by computer simulations in which the role of parametric assumptions, its robustness, the quality of different point estimates, the effect of dynamic termination criteria and many other settings were investigated.

[BibTex]

[BibTex]


no image
Support Vector Classification of Images with Local Features

Blaschko, MB.

Biologische Kybernetik, University of Massachusetts, Amherst, May 2005 (diplomathesis)

[BibTex]

[BibTex]


no image
Efficient Pattern Selection for Support Vector Classifiers and its CRM Application

Shin, H.

Biologische Kybernetik, Seoul National University, Seoul, Korea, February 2005 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Kernels: Regularization and Optimization

Ong, CS.

Biologische Kybernetik, The Australian National University, Canberra, Australia, 2005 (phdthesis)

PDF GZIP [BibTex]

PDF GZIP [BibTex]

2003


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

[BibTex]

2003

[BibTex]


no image
Ladungsträgerdynamik in optisch angeregten GaAs-Quantendrähten:Relaxation und Transport

Pfingsten, T.

Biologische Kybernetik, Institut für Festkörpertheorie, WWU Münster, June 2003 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Kernel Methods for Classification and Signal Separation

Gretton, A.

pages: 226, Biologische Kybernetik, University of Cambridge, Cambridge, April 2003 (phdthesis)

PostScript [BibTex]

PostScript [BibTex]


no image
Large margin Methods in Label Sequence Learning

Altun, Y.

Brown University, Providence, RI, USA, 2003 (mastersthesis)

[BibTex]

[BibTex]


no image
m-Alternative Forced Choice—Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F.

Biologische Kybernetik, Graduate School for Neural and Behavioural Sciences, Tübingen, 2003 (diplomathesis)

[BibTex]

[BibTex]

2002


no image
Nonlinear Multivariate Analysis with Geodesic Kernels

Kuss, M.

Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)

GZIP [BibTex]

2002

GZIP [BibTex]


no image
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms

Bousquet, O.

Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted

Abstract
New classification algorithms based on the notion of 'margin' (e.g. Support Vector Machines, Boosting) have recently been developed. The goal of this thesis is to better understand how they work, via a study of their theoretical performance. In order to do this, a general framework for real-valued classification is proposed. In this framework, it appears that the natural tools to use are Concentration Inequalities and Empirical Processes Theory. Thanks to an adaptation of these tools, a new measure of the size of a class of functions is introduced, which can be computed from the data. This allows, on the one hand, to better understand the role of eigenvalues of the kernel matrix in Support Vector Machines, and on the other hand, to obtain empirical model selection criteria.

PostScript [BibTex]


no image
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge

Chapelle, O.

Biologische Kybernetik, 2002 (phdthesis)

Abstract
This thesis presents a theoretical and practical study of Support Vector Machines (SVM) and related learning algorithms. In a first part, we introduce a new induction principle from which SVMs can be derived, but some new algorithms are also presented in this framework. In a second part, after studying how to estimate the generalization error of an SVM, we suggest to choose the kernel parameters of an SVM by minimizing this estimate. Several applications such as feature selection are presented. Finally the third part deals with the incoporation of prior knowledge in a learning algorithm and more specifically, we studied the case of known invariant transormations and the use of unlabeled data.

GZIP [BibTex]