Rojas-Carulla, M.
Learning Transferable Representations
University of Cambridge, UK, 2019 (phdthesis)
Gu, S.
Sample-efficient deep reinforcement learning for continuous control
University of Cambridge, UK, 2019 (phdthesis)
Ścibior*, A.
Formally justified and modular Bayesian inference for probabilistic programs
University of Cambridge, UK, 2019 (phdthesis)
Xu, J.
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing
Technical University of Munich, Germany, 2019 (mastersthesis)
Weichwald, S.
Pragmatism and Variable Transformations in Causal Modelling
ETH Zurich, 2019 (phdthesis)
Katiyar, P.
Quantification of tumor heterogeneity using PET/MRI and machine learning
Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)
Bauer, M.
Advances in Probabilistic Modelling: Sparse Gaussian Processes, Autoencoders, and Few-shot Learning
University of Cambridge, UK, 2019 (phdthesis)
Kienzle, W.
Real-Time Face Detection
Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)
Pfingsten, T.
Ladungsträgerdynamik in optisch angeregten GaAs-Quantendrähten:Relaxation und Transport
Biologische Kybernetik, Institut für Festkörpertheorie, WWU Münster, June 2003 (diplomathesis)
Gretton, A.
Kernel Methods for Classification and Signal Separation
pages: 226, Biologische Kybernetik, University of Cambridge, Cambridge, April 2003 (phdthesis)
Altun, Y.
Large margin Methods in Label Sequence Learning
Brown University, Providence, RI, USA, 2003 (mastersthesis)
Jäkel, F.
m-Alternative Forced Choice—Improving the Efficiency of the
Method of Constant Stimuli
Biologische Kybernetik, Graduate School for Neural and
Behavioural Sciences, Tübingen, 2003 (diplomathesis)
Kuss, M.
Nonlinear Multivariate Analysis with Geodesic Kernels
Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)
Bousquet, O.
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms
Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted
Chapelle, O.
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
Biologische Kybernetik, 2002 (phdthesis)
Eichhorn, J.
Variationsverfahren zur Untersuchung von
Grundzustandseigenschaften des Ein-Band Hubbard-Modells
Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)
Peters, J.
Cerebellar Control of Robot Arms
Biologische Kybernetik, Technische Univeristät München, München, Germany, 2001 (diplomathesis)
Seldin, Y.
On Unsupervised Learning of Mixtures of Markov Sources
Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, 2001 (diplomathesis)
Lal, TN.
Support Vector Machines: Theorie und Anwendung auf Prädiktion epileptischer Anfälle auf der Basis von EEG-Daten
Biologische Kybernetik, Institut für Angewandte Mathematik, Universität Bonn, 2001, Advised by Prof. Dr. S. Albeverio (diplomathesis)