Header logo is ei


2010


no image
Approximate Inference in Graphical Models

Hennig, P.

University of Cambridge, November 2010 (phdthesis)

Web [BibTex]

2010

Web [BibTex]


no image
Comparative Quantitative Evaluation of MR-Based Attenuation Correction Methods in Combined Brain PET/MR

Mantlik, F., Hofmann, M., Bezrukov, I., Kolb, A., Beyer, T., Reimold, M., Pichler, B., Schölkopf, B.

2010(M08-4), 2010 Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), November 2010 (talk)

Abstract
Combined PET/MR provides at the same time molecular and functional imaging as well as excellent soft tissue contrast. It does not allow one to directly measure the attenuation properties of scanned tissues, despite the fact that accurate attenuation maps are necessary for quantitative PET imaging. Several methods have therefore been proposed for MR-based attenuation correction (MR-AC). So far, they have only been evaluated on data acquired from separate MR and PET scanners. We evaluated several MR-AC methods on data from 10 patients acquired on a combined BrainPET/MR scanner. This allowed the consideration of specific PET/MR issues, such as the RF coil that attenuates and scatters 511 keV gammas. We evaluated simple MR thresholding methods as well as atlas and machine learning-based MR-AC. CT-based AC served as gold standard reference. To comprehensively evaluate the MR-AC accuracy, we used RoIs from 2 anatomic brain atlases with different levels of detail. Visual inspection of the PET images indicated that even the basic FLASH threshold MR-AC may be sufficient for several applications. Using a UTE sequence for bone prediction in MR-based thresholding occasionally led to false prediction of bone tissue inside the brain, causing a significant overestimation of PET activity. Although it yielded a lower mean underestimation of activity, it exhibited the highest variance of all methods. The atlas averaging approach had a smaller mean error, but showed high maximum overestimation on the RoIs of the more detailed atlas. The Nave Bayes and Atlas-Patch MR-AC yielded the smallest variance, and the Atlas-Patch also showed the smallest mean error. In conclusion, Atlas-based AC using only MR information on the BrainPET/MR yields a high level of accuracy that is sufficient for clinical quantitative imaging requirements. The Atlas-Patch approach was superior to alternative atlas-based methods, yielding a quantification error below 10% for all RoIs except very small ones.

[BibTex]

[BibTex]


no image
Bayesian Inference and Experimental Design for Large Generalised Linear Models

Nickisch, H.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, September 2010 (phdthesis)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Statistical image analysis and percolation theory

Davies, P., Langovoy, M., Wittich, O.

73rd Annual Meeting of the Institute of Mathematical Statistics (IMS), August 2010 (talk)

Abstract
We develop a novel method for detection of signals and reconstruction of images in the presence of random noise. The method uses results from percolation theory. We specifically address the problem of detection of objects of unknown shapes in the case of nonparametric noise. The noise density is unknown and can be heavy-tailed. We view the object detection problem as hypothesis testing for discrete statistical inverse problems. We present an algorithm that allows to detect objects of various shapes in noisy images. We prove results on consistency and algorithmic complexity of our procedures.

Web [BibTex]

Web [BibTex]


no image
Inferring High-Dimensional Causal Relations using Free Probability Theory

Zscheischler, J.

Humboldt Universität Berlin, Germany, August 2010 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Statistical image analysis and percolation theory

Langovoy, M., Wittich, O.

28th European Meeting of Statisticians (EMS), August 2010 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Predictive Representations For Sequential Decision Making Under Uncertainty

Boularias, A.

Université Laval, Quebec, Canada, July 2010 (phdthesis)

Abstract
The problem of making decisions is ubiquitous in life. This problem becomes even more complex when the decisions should be made sequentially. In fact, the execution of an action at a given time leads to a change in the environment of the problem, and this change cannot be predicted with certainty. The aim of a decision-making process is to optimally select actions in an uncertain environment. To this end, the environment is often modeled as a dynamical system with multiple states, and the actions are executed so that the system evolves toward a desirable state. In this thesis, we proposed a family of stochastic models and algorithms in order to improve the quality of of the decision-making process. The proposed models are alternative to Markov Decision Processes, a largely used framework for this type of problems. In particular, we showed that the state of a dynamical system can be represented more compactly if it is described in terms of predictions of certain future events. We also showed that even the cognitive process of selecting actions, known as policy, can be seen as a dynamical system. Starting from this observation, we proposed a panoply of algorithms, all based on predictive policy representations, in order to solve different problems of decision-making, such as decentralized planning, reinforcement learning, or imitation learning. We also analytically and empirically demonstrated that the proposed approaches lead to a decrease in the computational complexity and an increase in the quality of the decisions, compared to standard approaches for planning and learning under uncertainty.

PDF [BibTex]


no image
Cooperative Cuts: Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

24th European Conference on Operational Research (EURO XXIV), July 2010 (talk)

Abstract
We introduce cooperative cut, a minimum cut problem whose cost is a submodular function on sets of edges: the cost of an edge that is added to a cut set depends on the edges in the set. Applications are e.g. in probabilistic graphical models and image processing. We prove NP hardness and a polynomial lower bound on the approximation factor, and upper bounds via four approximation algorithms based on different techniques. Our additional heuristics have attractive practical properties, e.g., to rely only on standard min-cut. Both our algorithms and heuristics appear to do well in practice.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-supervised Subspace Learning and Application to Human Functional Magnetic Brain Resonance Imaging Data

Shelton, J.

Biologische Kybernetik, Eberhard Karls Universität, Tübingen, Germany, July 2010 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Solving Large-Scale Nonnegative Least Squares

Sra, S.

16th Conference of the International Linear Algebra Society (ILAS), June 2010 (talk)

Abstract
We study the fundamental problem of nonnegative least squares. This problem was apparently introduced by Lawson and Hanson [1] under the name NNLS. As is evident from its name, NNLS seeks least-squares solutions that are also nonnegative. Owing to its wide-applicability numerous algorithms have been derived for NNLS, beginning from the active-set approach of Lawson and Han- son [1] leading up to the sophisticated interior-point method of Bellavia et al. [2]. We present a new algorithm for NNLS that combines projected subgradients with the non-monotonic gradient descent idea of Barzilai and Borwein [3]. Our resulting algorithm is called BBSG, and we guarantee its convergence by ex- ploiting properties of NNLS in conjunction with projected subgradients. BBSG is surprisingly simple and scales well to large problems. We substantiate our claims by empirically evaluating BBSG and comparing it with established con- vex solvers and specialized NNLS algorithms. The numerical results suggest that BBSG is a practical method for solving large-scale NNLS problems.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Matrix Approximation Problems

Sra, S.

EU Regional School: Rheinisch-Westf{\"a}lische Technische Hochschule Aachen, May 2010 (talk)

PDF AVI [BibTex]

PDF AVI [BibTex]


no image
BCI2000 and Python

Hill, NJ.

Invited lecture at the 7th International BCI2000 Workshop, Pacific Grove, CA, USA, May 2010 (talk)

Abstract
A tutorial, with exercises, on how to integrate your own Python code with the BCI2000 realtime software package.

PDF [BibTex]

PDF [BibTex]


no image
Extending BCI2000 Functionality with Your Own C++ Code

Hill, NJ.

Invited lecture at the 7th International BCI2000 Workshop, Pacific Grove, CA, USA, May 2010 (talk)

Abstract
A tutorial, with exercises, on how to use BCI2000 C++ framework to write your own real-time signal-processing modules.

[BibTex]

[BibTex]


no image
Machine-Learning Methods for Decoding Intentional Brain States

Hill, NJ.

Symposium "Non-Invasive Brain Computer Interfaces: Current Developments and Applications" (BIOMAG), March 2010 (talk)

Abstract
Brain-computer interfaces (BCI) work by making the user perform a specific mental task, such as imagining moving body parts or performing some other covert mental activity, or attending to a particular stimulus out of an array of options, in order to encode their intention into a measurable brain signal. Signal-processing and machine-learning techniques are then used to decode the measured signal to identify the encoded mental state and hence extract the user‘s initial intention. The high-noise high-dimensional nature of brain-signals make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since “it doesn‘t matter what classifier you use once your features are extracted.” Using examples from our own MEG and EEG experiments, I‘ll demonstrate how machine-learning principles can be applied in order to improve BCI performance, if they are formulated in a domain-specific way. The result is a type of data-driven analysis that is more than “just” classification, and can be used to find better feature extractors.

PDF Web [BibTex]

PDF Web [BibTex]


no image
PAC-Bayesian Analysis in Unsupervised Learning

Seldin, Y.

Foundations and New Trends of PAC Bayesian Learning Workshop, March 2010 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Quantitative Evaluation of MR-based Attenuation Correction for Positron Emission Tomography (PET)

Mantlik, F.

Biologische Kybernetik, Universität Mannheim, Germany, March 2010 (diplomathesis)

[BibTex]

[BibTex]


no image
Learning Motor Primitives for Robotics

Kober, J., Peters, J.

EVENT Lab: Reinforcement Learning in Robotics and Virtual Reality, January 2010 (talk)

Abstract
The acquisition and self-improvement of novel motor skills is among the most important problems in robotics. Motor primitives offer one of the most promising frameworks for the application of machine learning techniques in this context. Employing the Dynamic Systems Motor primitives originally introduced by Ijspeert et al. (2003), appropriate learning algorithms for a concerted approach of both imitation and reinforcement learning are presented. Using these algorithms new motor skills, i.e., Ball-in-a-Cup, Ball-Paddling and Dart-Throwing, are learned.

[BibTex]

[BibTex]


no image
Finding Gene-Gene Interactions using Support Vector Machines

Rakitsch, B.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

[BibTex]

[BibTex]


no image
Structural and Relational Data Mining for Systems Biology Applications

Georgii, E.

Eberhard Karls Universität Tübingen, Germany , 2010 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Population Coding in the Visual System: Statistical Methods and Theory

Macke, J.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

[BibTex]

[BibTex]


no image
Bayesian Methods for Neural Data Analysis

Gerwinn, S.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Clustering with Neighborhood Graphs

Maier, M.

Universität des Saarlandes, Saarbrücken, Germany, 2010 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Detecting and modeling time shifts in microarray time series data applying Gaussian processes

Zwießele, M.

Eberhard Karls Universität Tübingen, Germany, 2010 (thesis)

[BibTex]

[BibTex]


no image
Detecting the mincut in sparse random graphs

Köhler, R.

Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)

[BibTex]

[BibTex]


no image
A wider view on encoding and decoding in the visual brain-computer interface speller system

Martens, S.

Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)

[BibTex]

2003


no image
Learning Control and Planning from the View of Control Theory and Imitation

Peters, J., Schaal, S.

NIPS Workshop "Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (talk)

Abstract
Learning control and planning in high dimensional continuous state-action systems, e.g., as needed in a humanoid robot, has so far been a domain beyond the applicability of generic planning techniques like reinforcement learning and dynamic programming. This talk describes an approach we have taken in order to enable complex robotics systems to learn to accomplish control tasks. Adaptive learning controllers equipped with statistical learning techniques can be used to learn tracking controllers -- missing state information and uncertainty in the state estimates are usually addressed by observers or direct adaptive control methods. Imitation learning is used as an ingredient to seed initial control policies whose output is a desired trajectory suitable to accomplish the task at hand. Reinforcement learning with stochastic policy gradients using a natural gradient forms the third component that allows refining the initial control policy until the task is accomplished. In comparison to general learning control, this approach is highly prestructured and thus more domain specific. However, it seems to be a theoretically clean and feasible strategy for control systems of the complexity that we need to address.

Web [BibTex]

2003

Web [BibTex]


no image
Recurrent neural networks from learning attractor dynamics

Schaal, S., Peters, J.

NIPS Workshop on RNNaissance: Recurrent Neural Networks, December 2003 (talk)

Abstract
Many forms of recurrent neural networks can be understood in terms of dynamic systems theory of difference equations or differential equations. Learning in such systems corresponds to adjusting some internal parameters to obtain a desired time evolution of the network, which can usually be characterized in term of point attractor dynamics, limit cycle dynamics, or, in some more rare cases, as strange attractor or chaotic dynamics. Finding a stable learning process to adjust the open parameters of the network towards shaping the desired attractor type and basin of attraction has remain a complex task, as the parameter trajectories during learning can lead the system through a variety of undesirable unstable behaviors, such that learning may never succeed. In this presentation, we review a recently developed learning framework for a class of recurrent neural networks that employs a more structured network approach. We assume that the canonical system behavior is known a priori, e.g., it is a point attractor or a limit cycle. With either supervised learning or reinforcement learning, it is possible to acquire the transformation from a simple representative of this canonical behavior (e.g., a 2nd order linear point attractor, or a simple limit cycle oscillator) to the desired highly complex attractor form. For supervised learning, one shot learning based on locally weighted regression techniques is possible. For reinforcement learning, stochastic policy gradient techniques can be employed. In any case, the recurrent network learned by these methods inherits the stability properties of the simple dynamic system that underlies the nonlinear transformation, such that stability of the learning approach is not a problem. We demonstrate the success of this approach for learning various skills on a humanoid robot, including tasks that require to incorporate additional sensory signals as coupling terms to modify the recurrent network evolution on-line.

Web [BibTex]

Web [BibTex]


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

[BibTex]

[BibTex]


no image
Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Remarks on Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Ladungsträgerdynamik in optisch angeregten GaAs-Quantendrähten:Relaxation und Transport

Pfingsten, T.

Biologische Kybernetik, Institut für Festkörpertheorie, WWU Münster, June 2003 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Kernel Methods for Classification and Signal Separation

Gretton, A.

pages: 226, Biologische Kybernetik, University of Cambridge, Cambridge, April 2003 (phdthesis)

PostScript [BibTex]

PostScript [BibTex]


no image
Rademacher and Gaussian averages in Learning Theory

Bousquet, O.

Universite de Marne-la-Vallee, March 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Introduction: Robots with Cognition?

Franz, MO.

6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)

Abstract
Using robots as models of cognitive behaviour has a long tradition in robotics. Parallel to the historical development in cognitive science, one observes two major, subsequent waves in cognitive robotics. The first is based on ideas of classical, cognitivist Artificial Intelligence (AI). According to the AI view of cognition as rule-based symbol manipulation, these robots typically try to extract symbolic descriptions of the environment from their sensors that are used to update a common, global world representation from which, in turn, the next action of the robot is derived. The AI approach has been successful in strongly restricted and controlled environments requiring well-defined tasks, e.g. in industrial assembly lines. AI-based robots mostly failed, however, in the unpredictable and unstructured environments that have to be faced by mobile robots. This has provoked the second wave in cognitive robotics which tries to achieve cognitive behaviour as an emergent property from the interaction of simple, low-level modules. Robots of the second wave are called animats as their architecture is designed to closely model aspects of real animals. Using only simple reactive mechanisms and Hebbian-type or evolutionary learning, the resulting animats often outperformed the highly complex AI-based robots in tasks such as obstacle avoidance, corridor following etc. While successful in generating robust, insect-like behaviour, typical animats are limited to stereotyped, fixed stimulus-response associations. If one adopts the view that cognition requires a flexible, goal-dependent choice of behaviours and planning capabilities (H.A. Mallot, Kognitionswissenschaft, 1999, 40-48) then it appears that cognitive behaviour cannot emerge from a collection of purely reactive modules. It rather requires environmentally decoupled structures that work without directly engaging the actions that it is concerned with. This poses the current challenge to cognitive robotics: How can we build cognitive robots that show the robustness and the learning capabilities of animats without falling back into the representational paradigm of AI? The speakers of the symposium present their approaches to this question in the context of robot navigation and sensorimotor learning. In the first talk, Prof. Helge Ritter introduces a robot system for imitation learning capable of exploring various alternatives in simulation before actually performing a task. The second speaker, Angelo Arleo, develops a model of spatial memory in rat navigation based on his electrophysiological experiments. He validates the model on a mobile robot which, in some navigation tasks, shows a performance comparable to that of the real rat. A similar model of spatial memory is used to investigate the mechanisms of territory formation in a series of robot experiments presented by Prof. Hanspeter Mallot. In the last talk, we return to the domain of sensorimotor learning where Ralf M{\"o}ller introduces his approach to generate anticipatory behaviour by learning forward models of sensorimotor relationships.

Web [BibTex]

Web [BibTex]


no image
Large margin Methods in Label Sequence Learning

Altun, Y.

Brown University, Providence, RI, USA, 2003 (mastersthesis)

[BibTex]

[BibTex]


no image
m-Alternative Forced Choice—Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F.

Biologische Kybernetik, Graduate School for Neural and Behavioural Sciences, Tübingen, 2003 (diplomathesis)

[BibTex]

[BibTex]

2002


no image
Nonlinear Multivariate Analysis with Geodesic Kernels

Kuss, M.

Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)

GZIP [BibTex]

2002

GZIP [BibTex]


no image
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms

Bousquet, O.

Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted

Abstract
New classification algorithms based on the notion of 'margin' (e.g. Support Vector Machines, Boosting) have recently been developed. The goal of this thesis is to better understand how they work, via a study of their theoretical performance. In order to do this, a general framework for real-valued classification is proposed. In this framework, it appears that the natural tools to use are Concentration Inequalities and Empirical Processes Theory. Thanks to an adaptation of these tools, a new measure of the size of a class of functions is introduced, which can be computed from the data. This allows, on the one hand, to better understand the role of eigenvalues of the kernel matrix in Support Vector Machines, and on the other hand, to obtain empirical model selection criteria.

PostScript [BibTex]


no image
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge

Chapelle, O.

Biologische Kybernetik, 2002 (phdthesis)

Abstract
This thesis presents a theoretical and practical study of Support Vector Machines (SVM) and related learning algorithms. In a first part, we introduce a new induction principle from which SVMs can be derived, but some new algorithms are also presented in this framework. In a second part, after studying how to estimate the generalization error of an SVM, we suggest to choose the kernel parameters of an SVM by minimizing this estimate. Several applications such as feature selection are presented. Finally the third part deals with the incoporation of prior knowledge in a learning algorithm and more specifically, we studied the case of known invariant transormations and the use of unlabeled data.

GZIP [BibTex]