Header logo is ei


2008


no image
BCPy2000

Hill, N., Schreiner, T., Puzicha, C., Farquhar, J.

Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

Web [BibTex]

2008

Web [BibTex]


no image
Logistic Regression for Graph Classification

Shervashidze, N., Tsuda, K.

NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (talk)

Abstract
In this paper we deal with graph classification. We propose a new algorithm for performing sparse logistic regression for graphs, which is comparable in accuracy with other methods of graph classification and produces probabilistic output in addition. Sparsity is required for the reason of interpretability, which is often necessary in domains such as bioinformatics or chemoinformatics.

Web [BibTex]

Web [BibTex]


no image
New Projected Quasi-Newton Methods with Applications

Sra, S.

Microsoft Research Tech-talk, December 2008 (talk)

Abstract
Box-constrained convex optimization problems are central to several applications in a variety of fields such as statistics, psychometrics, signal processing, medical imaging, and machine learning. Two fundamental examples are the non-negative least squares (NNLS) problem and the non-negative Kullback-Leibler (NNKL) divergence minimization problem. The non-negativity constraints are usually based on an underlying physical restriction, for e.g., when dealing with applications in astronomy, tomography, statistical estimation, or image restoration, the underlying parameters represent physical quantities such as concentration, weight, intensity, or frequency counts and are therefore only interpretable with non-negative values. Several modern optimization methods can be inefficient for simple problems such as NNLS and NNKL as they are really designed to handle far more general and complex problems. In this work we develop two simple quasi-Newton methods for solving box-constrained (differentiable) convex optimization problems that utilize the well-known BFGS and limited memory BFGS updates. We position our method between projected gradient (Rosen, 1960) and projected Newton (Bertsekas, 1982) methods, and prove its convergence under a simple Armijo step-size rule. We illustrate our method by showing applications to: Image deblurring, Positron Emission Tomography (PET) image reconstruction, and Non-negative Matrix Approximation (NMA). On medium sized data we observe performance competitive to established procedures, while for larger data the results are even better.

PDF [BibTex]

PDF [BibTex]


no image
Variational Bayesian Model Selection in Linear Gaussian State-Space based Models

Chiappa, S.

International Workshop on Flexible Modelling: Smoothing and Robustness (FMSR 2008), 2008, pages: 1, November 2008 (poster)

Web [BibTex]

Web [BibTex]


no image
MR-Based PET Attenuation Correction: Initial Results for Whole Body

Hofmann, M., Steinke, F., Aschoff, P., Lichy, M., Brady, M., Schölkopf, B., Pichler, B.

Medical Imaging Conference, October 2008 (talk)

[BibTex]

[BibTex]


no image
Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches

Gretton, A., Györfi, L.

19th International Conference on Algorithmic Learning Theory (ALT08), October 2008 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Data-driven goodness-of-fit tests

Langovoy, M.

2008 Barcelona Conference on Asymptotic Statistics (BAS), September 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Towards the neural basis of the flash-lag effect

Ecker, A., Berens, P., Hoenselaar, A., Subramaniyan, M., Tolias, A., Bethge, M.

International Workshop on Aspects of Adaptive Cortex Dynamics, 2008, pages: 1, September 2008 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Reinforcement Learning for Motor Primitives

Kober, J.

Biologische Kybernetik, University of Stuttgart, Stuttgart, Germany, August 2008 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Asymmetries of Time Series under Inverting their Direction

Peters, J.

Biologische Kybernetik, University of Heidelberg, August 2008 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
mGene: A Novel Discriminative Gene Finder

Schweikert, G., Zeller, G., Zien, A., Behr, J., Sonnenburg, S., Philips, P., Ong, C., Rätsch, G.

Worm Genomics and Systems Biology meeting, July 2008 (talk)

[BibTex]

[BibTex]


no image
Learning an Interest Operator from Human Eye Movements

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2008 (phdthesis)

[BibTex]

[BibTex]


no image
Policy Learning: A Unified Perspective With Applications In Robotics

Peters, J., Kober, J., Nguyen-Tuong, D.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 10, July 2008 (poster)

Abstract
Policy Learning approaches are among the best suited methods for high-dimensional, continuous control systems such as anthropomorphic robot arms and humanoid robots. In this paper, we show two contributions: firstly, we show a unified perspective which allows us to derive several policy learning al- gorithms from a common point of view, i.e, policy gradient algorithms, natural- gradient algorithms and EM-like policy learning. Secondly, we present several applications to both robot motor primitive learning as well as to robot control in task space. Results both from simulation and several different real robots are shown.

PDF [BibTex]

PDF [BibTex]


no image
Discovering Common Sequence Variation in Arabidopsis thaliana

Rätsch, G., Clark, R., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthman, N., Hu, T., Fu, G., Hinds, D., Cheng, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Ecker, J., Weigel, D., Schneeberger, K., Bohlen, A.

16th Annual International Conference Intelligent Systems for Molecular Biology (ISMB), July 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Coding Theory in Brain-Computer Interfaces

Martens, SMM.

Soria Summerschool on Computational Mathematics "Algebraic Coding Theory" (S3CM), July 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Motor Skill Learning for Cognitive Robotics

Peters, J.

6th International Cognitive Robotics Workshop (CogRob), July 2008 (talk)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can learn tasks triggered by environmental context or higher level instruction. However, learning techniques have yet to live up to this promise as only few methods manage to scale to high-dimensional manipulator or humanoid robots. In this tutorial, we give a general overview on motor skill learning for cognitive robotics using research at ATR, USC, CMU and Max-Planck in order to illustrate the problems in motor skill learning. For doing so, we discuss task-appropriate representations and algorithms for learning robot motor skills. Among the topics are the learning basic movements or motor primitives by imitation and reinforcement learning, learning rhytmic and discrete movements, fast regression methods for learning inverse dynamics and setups for learning task-space policies. Examples on various robots, e.g., SARCOS DB, the SARCOS Master Arm, BDI Little Dog and a Barrett WAM, are shown and include Ball-in-a-Cup, T-Ball, Juggling, Devil-Sticking, Operational Space Control and many others.

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning of Perceptual Coupling for Motor Primitives

Kober, J., Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 16, July 2008 (poster)

Abstract
Reinforcement learning is a natural choice for the learning of complex motor tasks by reward-related self-improvement. As the space of movements is high-dimensional and continuous, a policy parametrization is needed which can be used in this context. Traditional motor primitive approaches deal largely with open-loop policies which can only deal with small perturbations. In this paper, we present a new type of motor primitive policies which serve as closed-loop policies together with an appropriate learning algorithm. Our new motor primitives are an augmented version version of the dynamic systems motor primitives that incorporates perceptual coupling to external variables. We show that these motor primitives can perform complex tasks such a Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a human would hardly be able to learn this task. We initialize the open-loop policies by imitation learning and the perceptual coupling with a handcrafted solution. We first improve the open-loop policies and subsequently the perceptual coupling using a novel reinforcement learning method which is particularly well-suited for motor primitives.

PDF [BibTex]

PDF [BibTex]


no image
Painless Embeddings of Distributions: the Function Space View (Part 1)

Fukumizu, K., Gretton, A., Smola, A.

25th International Conference on Machine Learning (ICML), July 2008 (talk)

Abstract
This tutorial will give an introduction to the recent understanding and methodology of the kernel method: dealing with higher order statistics by embedding painlessly random variables/probability distributions. In the early days of kernel machines research, the "kernel trick" was considered a useful way of constructing nonlinear algorithms from linear ones. More recently, however, it has become clear that a potentially more far reaching use of kernels is as a linear way of dealing with higher order statistics by embedding distributions in a suitable reproducing kernel Hilbert space (RKHS). Notably, unlike the straightforward expansion of higher order moments or conventional characteristic function approach, the use of kernels or RKHS provides a painless, tractable way of embedding distributions. This line of reasoning leads naturally to the questions: what does it mean to embed a distribution in an RKHS? when is this embedding injective (and thus, when do different distributions have unique mappings)? what implications are there for learning algorithms that make use of these embeddings? This tutorial aims at answering these questions. There are a great variety of applications in machine learning and computer science, which require distribution estimation and/or comparison.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement Learning for Robotics

Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL), July 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Flexible Models for Population Spike Trains

Bethge, M., Macke, J., Berens, P., Ecker, A., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 52, June 2008 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in the Primary Visual Cortex of the Awake, Behaving Macaque

Berens, P., Ecker, A., Subramaniyan, M., Macke, J., Hauck, P., Bethge, M., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 48, June 2008 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Visual saliency re-visited: Center-surround patterns emerge as optimal predictors for human fixation targets

Wichmann, F., Kienzle, W., Schölkopf, B., Franz, M.

Journal of Vision, 8(6):635, 8th Annual Meeting of the Vision Sciences Society (VSS), June 2008 (poster)

Abstract
Humans perceives the world by directing the center of gaze from one location to another via rapid eye movements, called saccades. In the period between saccades the direction of gaze is held fixed for a few hundred milliseconds (fixations). It is primarily during fixations that information enters the visual system. Remarkably, however, after only a few fixations we perceive a coherent, high-resolution scene despite the visual acuity of the eye quickly decreasing away from the center of gaze: This suggests an effective strategy for selecting saccade targets. Top-down effects, such as the observer's task, thoughts, or intentions have an effect on saccadic selection. Equally well known is that bottom-up effects-local image structure-influence saccade targeting regardless of top-down effects. However, the question of what the most salient visual features are is still under debate. Here we model the relationship between spatial intensity patterns in natural images and the response of the saccadic system using tools from machine learning. This allows us to identify the most salient image patterns that guide the bottom-up component of the saccadic selection system, which we refer to as perceptive fields. We show that center-surround patterns emerge as the optimal solution to the problem of predicting saccade targets. Using a novel nonlinear system identification technique we reduce our learned classifier to a one-layer feed-forward network which is surprisingly simple compared to previously suggested models assuming more complex computations such as multi-scale processing, oriented filters and lateral inhibition. Nevertheless, our model is equally predictive and generalizes better to novel image sets. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Multi-Classification by Categorical Features via Clustering

Seldin, Y.

25th International Conference on Machine Learning (ICML), June 2008 (talk)

Abstract
We derive a generalization bound for multi-classification schemes based on grid clustering in categorical parameter product spaces. Grid clustering partitions the parameter space in the form of a Cartesian product of partitions for each of the parameters. The derived bound provides a means to evaluate clustering solutions in terms of the generalization power of a built-on classifier. For classification based on a single feature the bound serves to find a globally optimal classification rule. Comparison of the generalization power of individual features can then be used for feature ranking. Our experiments show that in this role the bound is much more precise than mutual information or normalized correlation indices.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Analysis of Pattern Recognition Methods in Classifying Bold Signals in Monkeys at 7-Tesla

Ku, S., Gretton, A., Macke, J., Tolias, A., Logothetis, N.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 67, June 2008 (poster)

Abstract
Pattern recognition methods have shown that fMRI data can reveal significant information about brain activity. For example, in the debate of how object-categories are represented in the brain, multivariate analysis has been used to provide evidence of distributed encoding schemes. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success. In this study we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis and Gaussian naïve Bayes (GNB), using data collected at high field (7T) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no methods perform above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection, and outlier elimination.

[BibTex]

[BibTex]


no image
Thin-Plate Splines Between Riemannian Manifolds

Steinke, F., Hein, M., Schölkopf, B.

Workshop on Geometry and Statistics of Shapes, June 2008 (talk)

Abstract
With the help of differential geometry we describe a framework to define a thin-plate spline like energy for maps between arbitrary Riemannian manifolds. The so-called Eells energy only depends on the intrinsic geometry of the input and output manifold, but not on their respective representation. The energy can then be used for regression between manifolds, we present results for cases where the outputs are rotations, sets of angles, or points on 3D surfaces. In the future we plan to also target regression where the output is an element of "shape space", understood as a Riemannian manifold. One could also further explore the meaning of the Eells energy when applied to diffeomorphisms between shapes, especially with regard to its potential use as a distance measure between shapes that does not depend on the embedding or the parametrisation of the shapes.

Web [BibTex]

Web [BibTex]


no image
Learning resolved velocity control

Peters, J.

2008 IEEE International Conference on Robotics and Automation (ICRA), May 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Causal inference from statistical data

Sun, X.

Biologische Kybernetik, Technische Hochschule Karlsruhe, Karlsruhe, Germany, April 2008 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in Primary Visual Cortex

Berens, P.

Biologische Kybernetik, Eberhard Karls Universität Tübingen, Tübingen, Germany, April 2008 (diplomathesis)

[BibTex]

[BibTex]


no image
Bayesian methods for protein structure determination

Habeck, M.

Machine Learning in Structural Bioinformatics, April 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
The role of stimulus correlations for population decoding in the retina

Schwartz, G., Macke, J., Berry, M.

Computational and Systems Neuroscience 2008 (COSYNE 2008), 5, pages: 172, March 2008 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Development and Application of a Python Scripting Framework for BCI2000

Schreiner, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, January 2008 (diplomathesis)

[BibTex]

[BibTex]


no image
Efficient and Invariant Regularisation with Application to Computer Graphics

Walder, CJ.

Biologische Kybernetik, University of Queensland, Brisbane, Australia, January 2008 (phdthesis)

Abstract
This thesis develops the theory and practise of reproducing kernel methods. Many functional inverse problems which arise in, for example, machine learning and computer graphics, have been treated with practical success using methods based on a reproducing kernel Hilbert space perspective. This perspective is often theoretically convenient, in that many functional analysis problems reduce to linear algebra problems in these spaces. Somewhat more complex is the case of conditionally positive definite kernels, and we provide an introduction to both cases, deriving in a particularly elementary manner some key results for the conditionally positive definite case. A common complaint of the practitioner is the long running time of these kernel based algorithms. We provide novel ways of alleviating these problems by essentially using a non-standard function basis which yields computational advantages. That said, by doing so we must also forego the aforementioned theoretical conveniences, and hence need some additional analysis which we provide in order to make the approach practicable. We demonstrate that the method leads to state of the art performance on the problem of surface reconstruction from points. We also provide some analysis of kernels invariant to transformations such as translation and dilation, and show that this indicates the value of learning algorithms which use conditionally positive definite kernels. Correspondingly, we provide a few approaches for making such algorithms practicable. We do this either by modifying the kernel, or directly solving problems with conditionally positive definite kernels, which had previously only been solved with positive definite kernels. We demonstrate the advantage of this approach, in particular by attaining state of the art classification performance with only one free parameter.

PDF [BibTex]

PDF [BibTex]

2003


no image
Natural Actor-Critic

Peters, J., Vijayakumar, S., Schaal, S.

NIPS Workshop " Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (poster)

PDF Web [BibTex]

2003

PDF Web [BibTex]


no image
Learning Control and Planning from the View of Control Theory and Imitation

Peters, J., Schaal, S.

NIPS Workshop "Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (talk)

Abstract
Learning control and planning in high dimensional continuous state-action systems, e.g., as needed in a humanoid robot, has so far been a domain beyond the applicability of generic planning techniques like reinforcement learning and dynamic programming. This talk describes an approach we have taken in order to enable complex robotics systems to learn to accomplish control tasks. Adaptive learning controllers equipped with statistical learning techniques can be used to learn tracking controllers -- missing state information and uncertainty in the state estimates are usually addressed by observers or direct adaptive control methods. Imitation learning is used as an ingredient to seed initial control policies whose output is a desired trajectory suitable to accomplish the task at hand. Reinforcement learning with stochastic policy gradients using a natural gradient forms the third component that allows refining the initial control policy until the task is accomplished. In comparison to general learning control, this approach is highly prestructured and thus more domain specific. However, it seems to be a theoretically clean and feasible strategy for control systems of the complexity that we need to address.

Web [BibTex]

Web [BibTex]


no image
Recurrent neural networks from learning attractor dynamics

Schaal, S., Peters, J.

NIPS Workshop on RNNaissance: Recurrent Neural Networks, December 2003 (talk)

Abstract
Many forms of recurrent neural networks can be understood in terms of dynamic systems theory of difference equations or differential equations. Learning in such systems corresponds to adjusting some internal parameters to obtain a desired time evolution of the network, which can usually be characterized in term of point attractor dynamics, limit cycle dynamics, or, in some more rare cases, as strange attractor or chaotic dynamics. Finding a stable learning process to adjust the open parameters of the network towards shaping the desired attractor type and basin of attraction has remain a complex task, as the parameter trajectories during learning can lead the system through a variety of undesirable unstable behaviors, such that learning may never succeed. In this presentation, we review a recently developed learning framework for a class of recurrent neural networks that employs a more structured network approach. We assume that the canonical system behavior is known a priori, e.g., it is a point attractor or a limit cycle. With either supervised learning or reinforcement learning, it is possible to acquire the transformation from a simple representative of this canonical behavior (e.g., a 2nd order linear point attractor, or a simple limit cycle oscillator) to the desired highly complex attractor form. For supervised learning, one shot learning based on locally weighted regression techniques is possible. For reinforcement learning, stochastic policy gradient techniques can be employed. In any case, the recurrent network learned by these methods inherits the stability properties of the simple dynamic system that underlies the nonlinear transformation, such that stability of the learning approach is not a problem. We demonstrate the success of this approach for learning various skills on a humanoid robot, including tasks that require to incorporate additional sensory signals as coupling terms to modify the recurrent network evolution on-line.

Web [BibTex]

Web [BibTex]


no image
Texture and haptic cues in slant discrimination: Measuring the effect of texture type on cue combination

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

Journal of Vision, 3(12):26, 2003 Fall Vision Meeting of the Optical Society of America, December 2003 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The influence of each cue in such average depends on the reliability of the source of information. (Young, Landy, & Maloney, 1993; Ernst & Banks, 2002.) In particular, Ernst & Banks (2002) formulate the combination performed by the human brain as that of the minimum variance unbiased estimator that can be constructed from the available cues. Using slant discrimination and slant judgment via probe adjustment as tasks, we have observed systematic differences in performance of human observers when a number of different types of textures were used as cue to slant (Rosas, Wichmann & Wagemans, 2003). If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. We have combined these texture types with object motion but the obtained results are difficult to reconcile with the unbiased minimum variance estimator model (Rosas & Wagemans, 2003). This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, & Landy (2002) have shown that while for between-modality combination the human visual system has access to the single-cue information, for within-modality combination (visual cues: disparity and texture) the single-cue information is lost, suggesting a coupling between these cues. Then, in the present study we combine the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition the texture cue and the haptic cue to slant are combined as predicted by an unbiased, minimum variance estimator model.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

[BibTex]

[BibTex]


no image
Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Remarks on Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Ladungsträgerdynamik in optisch angeregten GaAs-Quantendrähten:Relaxation und Transport

Pfingsten, T.

Biologische Kybernetik, Institut für Festkörpertheorie, WWU Münster, June 2003 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
A unifying computational framework for optimization and dynamic systemsapproaches to motor control

Mohajerian, P., Peters, J., Ijspeert, A., Schaal, S.

10th Joint Symposium on Neural Computation (JSNC 2003), 10, pages: 1, May 2003 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Methods for Classification and Signal Separation

Gretton, A.

pages: 226, Biologische Kybernetik, University of Cambridge, Cambridge, April 2003 (phdthesis)

PostScript [BibTex]

PostScript [BibTex]


no image
A Unifying Computational Framework for Optimization and Dynamic Systems Approaches to Motor Control

Mohajerian, P., Peters, J., Ijspeert, A., Schaal, S.

13th Annual Neural Control of Movement Meeting 2003, 13, pages: 1, April 2003 (poster)

[BibTex]

[BibTex]


no image
Rademacher and Gaussian averages in Learning Theory

Bousquet, O.

Universite de Marne-la-Vallee, March 2003 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Phase Information and the Recognition of Natural Images

Braun, D., Wichmann, F., Gegenfurtner, K.

6, pages: 138, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Fourier phase plays an important role in determining image structure. For example, when the phase spectrum of an image showing a ower is swapped with the phase spectrum of an image showing a tank, then we will usually perceive a tank in the resulting image, even though the amplitude spectrum is still that of the ower. Also, when the phases of an image are randomly swapped across frequencies, the resulting image becomes impossible to recognize. Our goal was to evaluate the e ect of phase manipulations in a more quantitative manner. On each trial subjects viewed two images of natural scenes. The subject had to indicate which one of the two images contained an animal. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was uniformly distributed in the interval [;+], where  was varied between 0 degree and 180 degrees. Image pairs were displayed for 100 msec. Subjects were remarkably resistant to the addition of phase noise. Even with [120; 120] degree noise, subjects still were at a level of 75% correct. The introduction of phase noise leads to a reduction of image contrast. Subjects were slightly better than a simple prediction based on this contrast reduction. However, when contrast response functions were measured in the same experimental paradigm, we found that performance in the phase noise experiment was signi cantly lower than that predicted by the corresponding contrast reduction.

Web [BibTex]

Web [BibTex]


no image
Introduction: Robots with Cognition?

Franz, MO.

6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)

Abstract
Using robots as models of cognitive behaviour has a long tradition in robotics. Parallel to the historical development in cognitive science, one observes two major, subsequent waves in cognitive robotics. The first is based on ideas of classical, cognitivist Artificial Intelligence (AI). According to the AI view of cognition as rule-based symbol manipulation, these robots typically try to extract symbolic descriptions of the environment from their sensors that are used to update a common, global world representation from which, in turn, the next action of the robot is derived. The AI approach has been successful in strongly restricted and controlled environments requiring well-defined tasks, e.g. in industrial assembly lines. AI-based robots mostly failed, however, in the unpredictable and unstructured environments that have to be faced by mobile robots. This has provoked the second wave in cognitive robotics which tries to achieve cognitive behaviour as an emergent property from the interaction of simple, low-level modules. Robots of the second wave are called animats as their architecture is designed to closely model aspects of real animals. Using only simple reactive mechanisms and Hebbian-type or evolutionary learning, the resulting animats often outperformed the highly complex AI-based robots in tasks such as obstacle avoidance, corridor following etc. While successful in generating robust, insect-like behaviour, typical animats are limited to stereotyped, fixed stimulus-response associations. If one adopts the view that cognition requires a flexible, goal-dependent choice of behaviours and planning capabilities (H.A. Mallot, Kognitionswissenschaft, 1999, 40-48) then it appears that cognitive behaviour cannot emerge from a collection of purely reactive modules. It rather requires environmentally decoupled structures that work without directly engaging the actions that it is concerned with. This poses the current challenge to cognitive robotics: How can we build cognitive robots that show the robustness and the learning capabilities of animats without falling back into the representational paradigm of AI? The speakers of the symposium present their approaches to this question in the context of robot navigation and sensorimotor learning. In the first talk, Prof. Helge Ritter introduces a robot system for imitation learning capable of exploring various alternatives in simulation before actually performing a task. The second speaker, Angelo Arleo, develops a model of spatial memory in rat navigation based on his electrophysiological experiments. He validates the model on a mobile robot which, in some navigation tasks, shows a performance comparable to that of the real rat. A similar model of spatial memory is used to investigate the mechanisms of territory formation in a series of robot experiments presented by Prof. Hanspeter Mallot. In the last talk, we return to the domain of sensorimotor learning where Ralf M{\"o}ller introduces his approach to generate anticipatory behaviour by learning forward models of sensorimotor relationships.

Web [BibTex]

Web [BibTex]


no image
Constraints measures and reproduction of style in robot imitation learning

Bakir, GH., Ilg, W., Franz, MO., Giese, M.

6, pages: 70, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Imitation learning is frequently discussed as a method for generating complex behaviors in robots by imitating human actors. The kinematic and the dynamic properties of humans and robots are typically quite di erent, however. For this reason observed human trajectories cannot be directly transferred to robots, even if their geometry is humanoid. Instead the human trajectory must be approximated by trajectories that can be realized by the robot. During this approximation deviations from the human trajectory may arise that change the style of the executed movement. Alternatively, the style of the movement might be well reproduced, but the imitated trajectory might be suboptimal with respect to di erent constraint measures from robotics control, leading to non-robust behavior. Goal of the presented work is to quantify this trade-o between \imitation quality" and constraint compatibility for the imitation of complex writing movements. In our experiment, we used trajectory data from human writing movements (see the abstract of Ilg et al. in this volume). The human trajectories were mapped onto robot trajectories by minimizing an error measure that integrates constraints that are important for the imitation of movement style and a regularizing constraint that ensures smooth joint trajectories with low velocities. In a rst experiment, both the end-e ector position and the shoulder angle of the robot were optimized in order to achieve good imitation together with accurate control of the end-e ector position. In a second experiment only the end-e ector trajectory was imitated whereas the motion of the elbow joint was determined using the optimal inverse kinematic solution for the robot. For both conditions di erent constraint measures (dexterity and relative jointlimit distances) and a measure for imitation quality were assessed. By controling the weight of the regularization term we can vary continuously between robot behavior optimizing imitation quality, and behavior minimizing joint velocities.

PDF Web [BibTex]

PDF Web [BibTex]