Walder, C., Breidt, M., Bülthoff, H., Schölkopf, B., Curio, C.
Markerless tracking of Dynamic 3D Scans of Faces
In Dynamic Faces: Insights from Experiments and Computation, pages: 255-276, (Editors: Curio, C., Bülthoff, H. H. and Giese, M. A.), MIT Press, Cambridge, MA, USA, December 2010 (inbook)
Peters, J., Bagnell, J.
Policy Gradient Methods
In Encyclopedia of Machine Learning, pages: 774-776, (Editors: Sammut, C. and Webb, G. I.), Springer, Berlin, Germany, December 2010 (inbook)
Hennig, P.
Approximate Inference in Graphical Models
University of Cambridge, November 2010 (phdthesis)
Nickisch, H.
Bayesian Inference and Experimental Design for Large Generalised Linear Models
Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, September 2010 (phdthesis)
Zscheischler, J.
Inferring High-Dimensional Causal Relations using Free Probability Theory
Humboldt Universität Berlin, Germany, August 2010 (diplomathesis)
Boularias, A.
Predictive Representations For Sequential Decision Making Under Uncertainty
Université Laval, Quebec, Canada, July 2010 (phdthesis)
Shelton, J.
Semi-supervised Subspace Learning and Application to Human Functional Magnetic Brain Resonance Imaging Data
Biologische Kybernetik, Eberhard Karls Universität, Tübingen, Germany, July 2010 (diplomathesis)
Mantlik, F.
Quantitative Evaluation of MR-based Attenuation Correction for Positron Emission Tomography (PET)
Biologische Kybernetik, Universität Mannheim, Germany, March 2010 (diplomathesis)
Detry, R., Baseski, E., Popovic, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J.
Learning Continuous Grasp Affordances by Sensorimotor Exploration
In From Motor Learning to Interaction Learning in Robots, pages: 451-465, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Kober, J., Mohler, B., Peters, J.
Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling
In From Motor Learning to Interaction Learning in Robots, pages: 209-225, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Sigaud, O., Peters, J.
From Motor Learning to Interaction Learning in Robots
In From Motor Learning to Interaction Learning in Robots, pages: 1-12, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Nguyen-Tuong, D., Seeger, M., Peters, J.
Real-Time Local GP Model Learning
In From Motor Learning to Interaction Learning in Robots, 264, pages: 193-207, Studies in Computational Intelligence, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Rakitsch, B.
Finding Gene-Gene Interactions using Support Vector Machines
Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)
Schweikert, G.
Accurate Prediction of Protein-Coding Genes with Discriminative Learning Techniques
Technische Universität Berlin, Germany, 2010 (phdthesis)
Charpiat, G., Bezrukov, I., Hofmann, M., Altun, Y., Schölkopf, B.
Machine Learning Methods for Automatic Image Colorization
In Computational Photography: Methods and Applications, pages: 395-418, Digital Imaging and Computer Vision, (Editors: Lukac, R.), CRC Press, Boca Raton, FL, USA, 2010 (inbook)
Hofmann, M.
Quantitative Positron Emission Tomography with a Combined PET/MR System
University of Oxford, UK, 2010 (phdthesis)
Georgii, E.
Structural and Relational Data Mining for Systems Biology Applications
Eberhard Karls Universität Tübingen, Germany , 2010 (phdthesis)
Macke, J.
Population Coding in the Visual System: Statistical Methods and Theory
Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)
Gerwinn, S.
Bayesian Methods for Neural Data Analysis
Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)
Bruzzone, L., Persello, C.
Approaches Based on Support Vector Machine to Classification of Remote Sensing Data
In Handbook of Pattern Recognition and Computer Vision, pages: 329-352, (Editors: Chen, C.H.), ICP, London, UK, 2010 (inbook)
Maier, M.
Clustering with Neighborhood Graphs
Universität des Saarlandes, Saarbrücken, Germany, 2010 (phdthesis)
Zwießele, M.
Detecting and modeling time shifts in microarray time series data applying Gaussian processes
Eberhard Karls Universität Tübingen, Germany, 2010 (thesis)
Köhler, R.
Detecting the mincut in sparse random graphs
Eberhard Karls Universität Tübingen, Germany, 2010 (diplomathesis)
Martens, S.
A wider view on encoding and decoding in the visual brain-computer interface speller system
Eberhard Karls Universität Tübingen, Germany, 2010 (phdthesis)
BakIr, G.
Extension to Kernel Dependency Estimation with Applications to Robotics
Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)
Hein, M.
Geometrical aspects of statistical learning theory
Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)
Steinke, F.
Implicit Surfaces For Modelling
Human Heads
Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)
Lal, TN.
Machine Learning Methods for Brain-Computer Interdaces
Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)
Nowozin, S.
Liver Perfusion using Level Set Methods
Biologische Kybernetik, Shanghai JiaoTong University, Shanghai, China, July 2005 (diplomathesis)
Altun, Y.
Discriminative Methods for Label Sequence Learning
Brown University, Providence, RI, USA, May 2005 (phdthesis)
Tanner, TG.
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain
Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)
Blaschko, MB.
Support Vector Classification of Images with Local Features
Biologische Kybernetik, University of Massachusetts, Amherst, May 2005 (diplomathesis)
Shin, H.
Efficient Pattern Selection for Support Vector Classifiers and its CRM Application
Biologische Kybernetik, Seoul National University, Seoul, Korea, February 2005 (phdthesis)
Ong, CS.
Kernels: Regularization and Optimization
Biologische Kybernetik, The Australian National University, Canberra, Australia, 2005 (phdthesis)
Schölkopf, B., Smola, A.
Support Vector Machines and Kernel Algorithms
In Encyclopedia of Biostatistics (2nd edition), Vol. 8, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)
Wagemans, J., Wichmann, F., de Beeck, H.
Visual perception
I: Basic principles
In Handbook of Cognition, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)
Kuss, M.
Nonlinear Multivariate Analysis with Geodesic Kernels
Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)
Bousquet, O.
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms
Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted
Chapelle, O.
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
Biologische Kybernetik, 2002 (phdthesis)
Wichmann, F.
Some Aspects of Modelling Human Spatial Vision: Contrast Discrimination
University of Oxford, University of Oxford, October 1999 (phdthesis)
Schölkopf, B., Smola, A., Müller, K.
Kernel principal component analysis.
In Advances in Kernel Methods—Support Vector Learning, pages: 327-352, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)
Bousquet, O.
Apprentissage Automatique et Simplicite
Biologische Kybernetik, 1999, In french (diplomathesis)
Altun, Y.
Machine Learning and Language Acquisition: A Model of Child’s Learning of Turkish Morphophonology
Middle East Technical University, Ankara, Turkey, 1999 (mastersthesis)
Williamson, R., Smola, A., Schölkopf, B.
Entropy numbers, operators and support vector kernels.
In Advances in Kernel Methods - Support Vector Learning, pages: 127-144, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)