Schmidt, M., Kim, D., Sra, S.
Projected Newton-type methods in machine learning
In Optimization for Machine Learning, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)
von Luxburg, U., Schölkopf, B.
Statistical Learning Theory: Models, Concepts, and Results
In Handbook of the History of Logic, Vol. 10: Inductive Logic, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)
Lang, A.
Crowdsourcing for optimisation of deconvolution methods via an iPhone application
Hochschule Reutlingen, Germany, April 2011 (mastersthesis)
Dinuzzo, F.
Learning functions with kernel methods
University of Pavia, Italy, January 2011 (phdthesis)
Peters, J., Tedrake, R., Roy, N., Morimoto, J.
Robot Learning
In Encyclopedia of Machine Learning, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)
Ihme, K., Zander, TO.
What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI
In Affective Computing and Intelligent Interaction, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)
Borgwardt, KM.
Kernel Methods in Bioinformatics
In Handbook of Statistical Bioinformatics, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)
Rosas, P., Wichmann, F.
Cue Combination: Beyond Optimality
In Sensory Cue Integration, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)
Nguyen-Tuong, D.
Model Learning in Robot Control
Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)
BakIr, G.
Extension to Kernel Dependency Estimation with Applications to Robotics
Biologische Kybernetik, Technische Universität Berlin, Berlin, November 2005 (phdthesis)
Hein, M.
Geometrical aspects of statistical learning theory
Biologische Kybernetik, Darmstadt, Darmstadt, November 2005 (phdthesis)
Steinke, F.
Implicit Surfaces For Modelling
Human Heads
Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, September 2005 (diplomathesis)
Lal, TN.
Machine Learning Methods for Brain-Computer Interdaces
Biologische Kybernetik, University of Darmstadt, September 2005 (phdthesis)
Nowozin, S.
Liver Perfusion using Level Set Methods
Biologische Kybernetik, Shanghai JiaoTong University, Shanghai, China, July 2005 (diplomathesis)
Altun, Y.
Discriminative Methods for Label Sequence Learning
Brown University, Providence, RI, USA, May 2005 (phdthesis)
Tanner, TG.
Efficient Adaptive Sampling of the Psychometric Function by Maximizing Information Gain
Biologische Kybernetik, Eberhard-Karls University Tübingen, Tübingen, Germany, May 2005 (diplomathesis)
Blaschko, MB.
Support Vector Classification of Images with Local Features
Biologische Kybernetik, University of Massachusetts, Amherst, May 2005 (diplomathesis)
Shin, H.
Efficient Pattern Selection for Support Vector Classifiers and its CRM Application
Biologische Kybernetik, Seoul National University, Seoul, Korea, February 2005 (phdthesis)
Ong, CS.
Kernels: Regularization and Optimization
Biologische Kybernetik, The Australian National University, Canberra, Australia, 2005 (phdthesis)
Schölkopf, B., Smola, A.
Support Vector Machines and Kernel Algorithms
In Encyclopedia of Biostatistics (2nd edition), Vol. 8, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)
Wagemans, J., Wichmann, F., de Beeck, H.
Visual perception
I: Basic principles
In Handbook of Cognition, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)
Kuss, M.
Nonlinear Multivariate Analysis with Geodesic Kernels
Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)
Bousquet, O.
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms
Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted
Chapelle, O.
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
Biologische Kybernetik, 2002 (phdthesis)
Wichmann, F.
Some Aspects of Modelling Human Spatial Vision: Contrast Discrimination
University of Oxford, University of Oxford, October 1999 (phdthesis)
Schölkopf, B., Smola, A., Müller, K.
Kernel principal component analysis.
In Advances in Kernel Methods—Support Vector Learning, pages: 327-352, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)
Bousquet, O.
Apprentissage Automatique et Simplicite
Biologische Kybernetik, 1999, In french (diplomathesis)
Altun, Y.
Machine Learning and Language Acquisition: A Model of Child’s Learning of Turkish Morphophonology
Middle East Technical University, Ankara, Turkey, 1999 (mastersthesis)
Williamson, R., Smola, A., Schölkopf, B.
Entropy numbers, operators and support vector kernels.
In Advances in Kernel Methods - Support Vector Learning, pages: 127-144, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)