Header logo is ei


2012


no image
High Gamma-Power Predicts Performance in Brain-Computer Interfacing

Grosse-Wentrup, M., Schölkopf, B.

(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)

Abstract
Subjects operating a brain-computer interface (BCI) based on sensorimotor rhythms exhibit large variations in performance over the course of an experimental session. Here, we show that high-frequency gamma-oscillations, originating in fronto-parietal networks, predict such variations on a trial-to-trial basis. We interpret this nding as empirical support for an in uence of attentional networks on BCI-performance via modulation of the sensorimotor rhythm.

PDF [BibTex]

2012

PDF [BibTex]

2002


no image
Kernel Dependency Estimation

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.

(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)

Abstract
We consider the learning problem of finding a dependency between a general class of objects and another, possibly different, general class of objects. The objects can be for example: vectors, images, strings, trees or graphs. Such a task is made possible by employing similarity measures in both input and output spaces using kernel functions, thus embedding the objects into vector spaces. Output kernels also make it possible to encode prior information and/or invariances in the loss function in an elegant way. We experimentally validate our approach on several tasks: mapping strings to strings, pattern recognition, and reconstruction from partial images.

PDF [BibTex]

2002

PDF [BibTex]


no image
Global Geometry of SVM Classifiers

Zhou, D., Xiao, B., Zhou, H., Dai, R.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)

Abstract
We construct an geometry framework for any norm Support Vector Machine (SVM) classifiers. Within this framework, separating hyperplanes, dual descriptions and solutions of SVM classifiers are constructed by a purely geometric fashion. In contrast with the optimization theory used in SVM classifiers, we have no complicated computations any more. Each step in our theory is guided by elegant geometric intuitions.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Computationally Efficient Face Detection

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)

Web [BibTex]

Web [BibTex]


no image
Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

EU-Project BLISS, January 2002 (techreport)

GZIP [BibTex]

GZIP [BibTex]


no image
A compression approach to support vector model selection

von Luxburg, U., Bousquet, O., Schölkopf, B.

(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)

Abstract
In this paper we investigate connections between statistical learning theory and data compression on the basis of support vector machine (SVM) model selection. Inspired by several generalization bounds we construct ``compression coefficients'' for SVMs, which measure the amount by which the training labels can be compressed by some classification hypothesis. The main idea is to relate the coding precision of this hypothesis to the width of the margin of the SVM. The compression coefficients connect well known quantities such as the radius-margin ratio R^2/rho^2, the eigenvalues of the kernel matrix and the number of support vectors. To test whether they are useful in practice we ran model selection experiments on several real world datasets. As a result we found that compression coefficients can fairly accurately predict the parameters for which the test error is minimized.

[BibTex]

[BibTex]


no image
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design

Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.

Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)

Web [BibTex]

Web [BibTex]


no image
Observations on the Nyström Method for Gaussian Process Prediction

Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)

Abstract
A number of methods for speeding up Gaussian Process (GP) prediction have been proposed, including the Nystr{\"o}m method of Williams and Seeger (2001). In this paper we focus on two issues (1) the relationship of the Nystr{\"o}m method to the Subset of Regressors method (Poggio and Girosi 1990; Luo and Wahba, 1997) and (2) understanding in what circumstances the Nystr{\"o}m approximation would be expected to provide a good approximation to exact GP regression.

PostScript [BibTex]

PostScript [BibTex]

2000


no image
The Kernel Trick for Distances

Schölkopf, B.

(MSR-TR-2000-51), Microsoft Research, Redmond, WA, USA, 2000 (techreport)

Abstract
A method is described which, like the kernel trick in support vector machines (SVMs), lets us generalize distance-based algorithms to operate in feature spaces, usually nonlinearly related to the input space. This is done by identifying a class of kernels which can be represented as normbased distances in Hilbert spaces. It turns out that common kernel algorithms, such as SVMs and kernel PCA, are actually really distance based algorithms and can be run with that class of kernels, too. As well as providing a useful new insight into how these algorithms work, the present work can form the basis for conceiving new algorithms.

PDF Web [BibTex]

2000

PDF Web [BibTex]


no image
Kernel method for percentile feature extraction

Schölkopf, B., Platt, J., Smola, A.

(MSR-TR-2000-22), Microsoft Research, 2000 (techreport)

Abstract
A method is proposed which computes a direction in a dataset such that a speci􏰘ed fraction of a particular class of all examples is separated from the overall mean by a maximal margin􏰤 The pro jector onto that direction can be used for class􏰣speci􏰘c feature extraction􏰤 The algorithm is carried out in a feature space associated with a support vector kernel function􏰢 hence it can be used to construct a large class of nonlinear fea􏰣 ture extractors􏰤 In the particular case where there exists only one class􏰢 the method can be thought of as a robust form of principal component analysis􏰢 where instead of variance we maximize percentile thresholds􏰤 Fi􏰣 nally􏰢 we generalize it to also include the possibility of specifying negative examples􏰤

PDF [BibTex]

PDF [BibTex]

1996


no image
The DELVE user manual

Rasmussen, CE., Neal, RM., Hinton, GE., van Camp, D., Revow, M., Ghahramani, Z., Kustra, R., Tibshirani, R.

Department of Computer Science, University of Toronto, December 1996 (techreport)

Abstract
This manual describes the preliminary release of the DELVE environment. Some features described here have not yet implemented, as noted. Support for regression tasks is presently somewhat more developed than that for classification tasks. We recommend that you exercise caution when using this version of DELVE for real work, as it is possible that bugs remain in the software. We hope that you will send us reports of any problems you encounter, as well as any other comments you may have on the software or manual, at the e-mail address below. Please mention the version number of the manual and/or the software with any comments you send.

GZIP [BibTex]

1996

GZIP [BibTex]


no image
Nonlinear Component Analysis as a Kernel Eigenvalue Problem

Schölkopf, B., Smola, A., Müller, K.

(44), Max Planck Institute for Biological Cybernetics Tübingen, December 1996, This technical report has also been published elsewhere (techreport)

Abstract
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible 5-pixel products in 16 x 16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.

[BibTex]

[BibTex]


no image
Learning View Graphs for Robot Navigation

Franz, M., Schölkopf, B., Georg, P., Mallot, H., Bülthoff, H.

(33), Max Planck Institute for Biological Cybernetics, Tübingen,, July 1996 (techreport)

Abstract
We present a purely vision-based scheme for learning a parsimonious representation of an open environment. Using simple exploration behaviours, our system constructs a graph of appropriately chosen views. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. Simulations and robot experiments demonstrate the feasibility of the proposed approach.

[BibTex]

[BibTex]