Header logo is ei


2001


no image
Kernel Methods for Extracting Local Image Semantics

Bradshaw, B., Schölkopf, B., Platt, J.

(MSR-TR-2001-99), Microsoft Research, October 2001 (techreport)

Web [BibTex]

2001

Web [BibTex]


no image
Calibration of Digital Amateur Cameras

Urbanek, M., Horaud, R., Sturm, P.

(RR-4214), INRIA Rhone Alpes, Montbonnot, France, July 2001 (techreport)

Web [BibTex]

Web [BibTex]


no image
Incorporating Invariances in Non-Linear Support Vector Machines

Chapelle, O., Schölkopf, B.

Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2001 (techreport)

Abstract
We consider the problem of how to incorporate in the Support Vector Machine (SVM) framework invariances given by some a priori known transformations under which the data should be invariant. It extends some previous work which was only applicable with linear SVMs and we show on a digit recognition task that the proposed approach is superior to the traditional Virtual Support Vector method.

PostScript [BibTex]

PostScript [BibTex]


no image
Bound on the Leave-One-Out Error for Density Support Estimation using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Smola, A., Rayner, P.

University of Cambridge, 2001 (techreport)

[BibTex]

[BibTex]


no image
Bound on the Leave-One-Out Error for 2-Class Classification using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Rayner, P.

University of Cambridge, 2001, Updated May 2003 (literature review expanded) (techreport)

Abstract
Three estimates of the leave-one-out error for $nu$-support vector (SV) machine binary classifiers are presented. Two of the estimates are based on the geometrical concept of the {em span}, which was introduced in the context of bounding the leave-one-out error for $C$-SV machine binary classifiers, while the third is based on optimisation over the criterion used to train the $nu$-support vector classifier. It is shown that the estimates presented herein provide informative and efficient approximations of the generalisation behaviour, in both a toy example and benchmark data sets. The proof strategies in the $nu$-SV context are also compared with those used to derive leave-one-out error estimates in the $C$-SV case.

PostScript [BibTex]

PostScript [BibTex]


no image
Some kernels for structured data

Bartlett, P., Schölkopf, B.

Biowulf Technologies, 2001 (techreport)

[BibTex]

[BibTex]


no image
Inference Principles and Model Selection

Buhmann, J., Schölkopf, B.

(01301), Dagstuhl Seminar, 2001 (techreport)

Web [BibTex]

Web [BibTex]

2000


no image
The Kernel Trick for Distances

Schölkopf, B.

(MSR-TR-2000-51), Microsoft Research, Redmond, WA, USA, 2000 (techreport)

Abstract
A method is described which, like the kernel trick in support vector machines (SVMs), lets us generalize distance-based algorithms to operate in feature spaces, usually nonlinearly related to the input space. This is done by identifying a class of kernels which can be represented as normbased distances in Hilbert spaces. It turns out that common kernel algorithms, such as SVMs and kernel PCA, are actually really distance based algorithms and can be run with that class of kernels, too. As well as providing a useful new insight into how these algorithms work, the present work can form the basis for conceiving new algorithms.

PDF Web [BibTex]

2000

PDF Web [BibTex]


no image
Kernel method for percentile feature extraction

Schölkopf, B., Platt, J., Smola, A.

(MSR-TR-2000-22), Microsoft Research, 2000 (techreport)

Abstract
A method is proposed which computes a direction in a dataset such that a speci􏰘ed fraction of a particular class of all examples is separated from the overall mean by a maximal margin􏰤 The pro jector onto that direction can be used for class􏰣speci􏰘c feature extraction􏰤 The algorithm is carried out in a feature space associated with a support vector kernel function􏰢 hence it can be used to construct a large class of nonlinear fea􏰣 ture extractors􏰤 In the particular case where there exists only one class􏰢 the method can be thought of as a robust form of principal component analysis􏰢 where instead of variance we maximize percentile thresholds􏰤 Fi􏰣 nally􏰢 we generalize it to also include the possibility of specifying negative examples􏰤

PDF [BibTex]

PDF [BibTex]