Header logo is ei


1999


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites in DNA

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lemmen, C., Smola, A., Lengauer, T., Müller, K.

In German Conference on Bioinformatics (GCB 1999), October 1999 (inproceedings)

Abstract
In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points from which regions encoding pro­ teins start, the so­called translation initiation sites (TIS). This can be modeled as a classification prob­ lem. We demonstrate the power of support vector machines (SVMs) for this task, and show how to suc­ cessfully incorporate biological prior knowledge by engineering an appropriate kernel function.

Web [BibTex]

1999

Web [BibTex]


no image
Shrinking the tube: a new support vector regression algorithm

Schölkopf, B., Bartlett, P., Smola, A., Williamson, R.

In Advances in Neural Information Processing Systems 11, pages: 330-336 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, 12th Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semiparametric support vector and linear programming machines

Smola, A., Friess, T., Schölkopf, B.

In Advances in Neural Information Processing Systems 11, pages: 585-591 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, Twelfth Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)

Abstract
Semiparametric models are useful tools in the case where domain knowledge exists about the function to be estimated or emphasis is put onto understandability of the model. We extend two learning algorithms - Support Vector machines and Linear Programming machines to this case and give experimental results for SV machines.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel PCA and De-noising in feature spaces

Mika, S., Schölkopf, B., Smola, A., Müller, K., Scholz, M., Rätsch, G.

In Advances in Neural Information Processing Systems 11, pages: 536-542 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, 12th Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)

Abstract
Kernel PCA as a nonlinear feature extractor has proven powerful as a preprocessing step for classification algorithms. But it can also be considered as a natural generalization of linear principal component analysis. This gives rise to the question how to use nonlinear features for data compression, reconstruction, and de-noising, applications common in linear PCA. This is a nontrivial task, as the results provided by kernel PCA live in some high dimensional feature space and need not have pre-images in input space. This work presents ideas for finding approximate pre-images, focusing on Gaussian kernels, and shows experimental results using these pre-images in data reconstruction and de-noising on toy examples as well as on real world data.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Estimating the support of a high-dimensional distribution

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

(MSR-TR-99-87), Microsoft Research, 1999 (techreport)

Web [BibTex]

Web [BibTex]


no image
Classifying LEP data with support vector algorithms.

Vannerem, P., Müller, K., Smola, A., Schölkopf, B., Söldner-Rembold, S.

In Artificial Intelligence in High Energy Nuclear Physics 99, Artificial Intelligence in High Energy Nuclear Physics 99, 1999 (inproceedings)

[BibTex]

[BibTex]


no image
Generalization Bounds via Eigenvalues of the Gram matrix

Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.

(99-035), NeuroCOLT, 1999 (techreport)

[BibTex]

[BibTex]


no image
Classification on proximity data with LP-machines

Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Müller, K., Obermayer, K., Williamson, R.

In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 304-309, Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Kernel-dependent support vector error bounds

Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.

In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 103-108 , Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Linear programs for automatic accuracy control in regression

Smola, A., Schölkopf, B., Rätsch, G.

In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 575-580 , Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Regularized principal manifolds.

Smola, A., Williamson, R., Mika, S., Schölkopf, B.

In Lecture Notes in Artificial Intelligence, Vol. 1572, 1572, pages: 214-229 , Lecture Notes in Artificial Intelligence, (Editors: P Fischer and H-U Simon), Springer, Berlin, Germany, Computational Learning Theory: 4th European Conference, 1999 (inproceedings)

[BibTex]

[BibTex]


no image
Entropy numbers, operators and support vector kernels.

Williamson, R., Smola, A., Schölkopf, B.

In Lecture Notes in Artificial Intelligence, Vol. 1572, 1572, pages: 285-299, Lecture Notes in Artificial Intelligence, (Editors: P Fischer and H-U Simon), Springer, Berlin, Germany, Computational Learning Theory: 4th European Conference, 1999 (inproceedings)

[BibTex]

[BibTex]


no image
Sparse kernel feature analysis

Smola, A., Mangasarian, O., Schölkopf, B.

(99-04), Data Mining Institute, 1999, 24th Annual Conference of Gesellschaft f{\"u}r Klassifikation, University of Passau (techreport)

PostScript [BibTex]

PostScript [BibTex]


no image
Is the Hippocampus a Kalman Filter?

Bousquet, O., Balakrishnan, K., Honavar, V.

In Proceedings of the Pacific Symposium on Biocomputing, 3, pages: 619-630, Proceedings of the Pacific Symposium on Biocomputing, 1999 (inproceedings)

[BibTex]

[BibTex]


no image
A Comparison of Artificial Neural Networks and Cluster Analysis for Typing Biometrics Authentication

Maisuria, K., Ong, CS., Lai, .

In unknown, pages: 9999-9999, International Joint Conference on Neural Networks, 1999 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Fisher discriminant analysis with kernels

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.

In Proceedings of the 1999 IEEE Signal Processing Society Workshop, 9, pages: 41-48, (Editors: Y-H Hu and J Larsen and E Wilson and S Douglas), IEEE, Neural Networks for Signal Processing IX, 1999 (inproceedings)

DOI [BibTex]

DOI [BibTex]