Header logo is ei


2017


no image
Elements of Causal Inference - Foundations and Learning Algorithms

Peters, J., Janzing, D., Schölkopf, B.

Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)

PDF [BibTex]

2017

PDF [BibTex]


no image
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)

Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.

Dagstuhl Reports, 6(11):142-167, 2017 (book)

DOI [BibTex]


no image
Cosmology from Cosmic Shear with DES Science Verification Data

Abbott, T., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Armstrong, R., Bacon, D., Banerji, M., Bauer, A. H., Baxter, E., others,

arXiv preprint arXiv:1507.05552, 2015 (techreport)

link (url) [BibTex]

link (url) [BibTex]


no image
The DES Science Verification Weak Lensing Shear Catalogs

Jarvis, M., Sheldon, E., Zuntz, J., Kacprzak, T., Bridle, S. L., Amara, A., Armstrong, R., Becker, M. R., Bernstein, G. M., Bonnett, C., others,

arXiv preprint arXiv:1507.05603, 2015 (techreport)

link (url) [BibTex]

link (url) [BibTex]


no image
Kernels for identifying patterns in datasets containing noise or transformation invariances

Schölkopf, B., Chapelle, C.

United States Patent, No. 8209269, June 2012 (patent)

[BibTex]


no image
High Gamma-Power Predicts Performance in Brain-Computer Interfacing

Grosse-Wentrup, M., Schölkopf, B.

(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)

Abstract
Subjects operating a brain-computer interface (BCI) based on sensorimotor rhythms exhibit large variations in performance over the course of an experimental session. Here, we show that high-frequency gamma-oscillations, originating in fronto-parietal networks, predict such variations on a trial-to-trial basis. We interpret this nding as empirical support for an in uence of attentional networks on BCI-performance via modulation of the sensorimotor rhythm.

PDF [BibTex]

PDF [BibTex]

2000


no image
Advances in Large Margin Classifiers

Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.

pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

Abstract
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

Web [BibTex]

2000

Web [BibTex]


no image
The Kernel Trick for Distances

Schölkopf, B.

(MSR-TR-2000-51), Microsoft Research, Redmond, WA, USA, 2000 (techreport)

Abstract
A method is described which, like the kernel trick in support vector machines (SVMs), lets us generalize distance-based algorithms to operate in feature spaces, usually nonlinearly related to the input space. This is done by identifying a class of kernels which can be represented as normbased distances in Hilbert spaces. It turns out that common kernel algorithms, such as SVMs and kernel PCA, are actually really distance based algorithms and can be run with that class of kernels, too. As well as providing a useful new insight into how these algorithms work, the present work can form the basis for conceiving new algorithms.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel method for percentile feature extraction

Schölkopf, B., Platt, J., Smola, A.

(MSR-TR-2000-22), Microsoft Research, 2000 (techreport)

Abstract
A method is proposed which computes a direction in a dataset such that a speci􏰘ed fraction of a particular class of all examples is separated from the overall mean by a maximal margin􏰤 The pro jector onto that direction can be used for class􏰣speci􏰘c feature extraction􏰤 The algorithm is carried out in a feature space associated with a support vector kernel function􏰢 hence it can be used to construct a large class of nonlinear fea􏰣 ture extractors􏰤 In the particular case where there exists only one class􏰢 the method can be thought of as a robust form of principal component analysis􏰢 where instead of variance we maximize percentile thresholds􏰤 Fi􏰣 nally􏰢 we generalize it to also include the possibility of specifying negative examples􏰤

PDF [BibTex]

PDF [BibTex]