48 results
(View BibTeX file of all listed publications)

**Machine Learning for Brain-Computer Interfaces**
Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS (AMD), December 2009 (talk)

**PAC-Bayesian Approach to Formulation of Clustering Objectives**
NIPS Workshop on "Clustering: Science or Art? Towards Principled Approaches", December 2009 (talk)

**Semi-supervised Kernel Canonical Correlation Analysis of Human Functional Magnetic Resonance Imaging Data**
Women in Machine Learning Workshop (WiML), December 2009 (talk)

**Event-Related Potentials in Brain-Computer Interfacing**
Invited lecture on the bachelor & masters course "Introduction to Brain-Computer Interfacing", October 2009 (talk)

**BCI2000 and Python**
Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

**Implementing a Signal Processing Filter in BCI2000 Using C++**
Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

**Randomized algorithms for statistical image analysis based on percolation theory**
27th European Meeting of Statisticians (EMS), July 2009 (talk)

**Learning Motor Primitives for Robotics**
Advanced Telecommunications Research Center ATR, June 2009 (talk)

**Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer**
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 2009 (talk)

**Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**Positional Oligomer Importance Matrices**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**An Automated Combination of Kernels for Predicting Protein Subcellular Localization**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration**
Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

**Policy Learning for Robotics**
14th International Conference on Neural Information Processing (ICONIP), November 2007 (talk)

**Hilbert Space Representations of Probability Distributions**
2nd Workshop on Machine Learning and Optimization at the ISM, October 2007 (talk)

**Regression with Intervals**
International Workshop on Data-Mining and Statistical Science (DMSS2007), October 2007, JSAI Incentive Award. Talk was given by Hisashi Kashima. (talk)

**MR-Based PET Attenuation Correction: Method and Validation**
Joint Molecular Imaging Conference, September 2007 (talk)

**Bayesian methods for NMR structure determination**
29th Annual Discussion Meeting: Magnetic Resonance in Biophysical Chemistry, September 2007 (talk)

**Collaborative Filtering via Ensembles of Matrix Factorizations**
KDD Cup and Workshop, August 2007 (talk)

**Thinking Out Loud: Research and Development of Brain Computer Interfaces**
Invited keynote talk at the Max Planck Society‘s PhDNet Workshop., July 2007 (talk)

**Local Learning Algorithms for Transductive Classification, Clustering and Data Projection**
Yahoo Inc., July 2007 (talk)

**Dirichlet Process Mixtures of Factor Analysers**
Fifth Workshop on Bayesian Inference in Stochastic Processes (BSP5), June 2007 (talk)

**New BCI approaches: Selective Attention to Auditory and Tactile Stimulus Streams**
Invited talk at the PASCAL Workshop on Methods of Data Analysis in Computational Neuroscience and Brain Computer Interfaces, June 2007 (talk)

**Towards Motor Skill Learning in Robotics**
Interactive Robot Learning - RSS workshop, June 2007 (talk)

**Transductive Support Vector Machines for Structured Variables**
International Conference on Machine Learning (ICML), June 2007 (talk)

**Impact of target-to-target interval on classification performance in the P300 speller**
Scientific Meeting "Applied Neuroscience for Healthy Brain Function", May 2007 (talk)

Peters, J.
**Benchmarking of Policy Gradient Methods**
ADPRL Workshop, April 2007 (talk)

**New Margin- and Evidence-Based Approaches for EEG Signal Classification**
Invited talk at the FaSor Jahressymposium, February 2007 (talk)

**Spectral clustering and transductive inference for graph data**
NIPS Workshop on Kernel Methods and Structured Domains, December 2005 (talk)

**Some thoughts about Gaussian Processes**
NIPS Workshop on Open Problems in Gaussian Processes for Machine Learning, December 2005 (talk)

Chapelle, O.
**A taxonomy of semi-supervised learning algorithms**
Yahoo!, December 2005 (talk)

**Building Sparse Large Margin Classifiers**
The 22nd International Conference on Machine Learning (ICML), August 2005 (talk)

**Learning from Labeled and Unlabeled Data on a Directed Graph**
The 22nd International Conference on Machine Learning, August 2005 (talk)

**Machine-Learning Approaches to BCI in Tübingen**
Brain-Computer Interface Technology, June 2005, Talk given by NJH. (talk)

**Learning Motor Primitives with Reinforcement Learning**
ROBOTICS Workshop on Modular Foundations for Control and Perception, June 2005 (talk)

**Motor Skill Learning for Humanoid Robots**
First Conference Undergraduate Computer Sciences and Informations Sciences (CS/IS), May 2005 (talk)

**Kernel Constrained Covariance for Dependence Measurement**
AISTATS, January 2005 (talk)

Zhou, D.
**How to learn from very few examples?**
October 2004 (talk)

Zhou, D.
**Discrete vs. Continuous: Two Sides of Machine Learning**
October 2004 (talk)

Zhou, D.
**Discrete vs. Continuous: Two Sides of Machine Learning**
October 2004 (talk)

**Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung**
September 2004 (talk)

**The benefit of liquid Helium cooling for Cryo-Electron Tomography: A quantitative
comparative study**
The thirteenth European Microscopy Congress, August 2004 (talk)

Bousquet, O.
**Introduction to Category Theory**
Internal Seminar, January 2004 (talk)

Bousquet, O.
**Advanced Statistical Learning Theory**
Machine Learning Summer School, 2004 (talk)

Bousquet, O.
**Transductive Learning: Motivation, Models, Algorithms**
January 2002 (talk)