22 results
(View BibTeX file of all listed publications)

**Nonlinear functional causal models for distinguishing cause from effect**
In *Statistics and Causality: Methods for Applied Empirical Research*, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

**Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke**
World Molecular Imaging Conference, 2016 (talk)

**A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis**
In *Brain-Computer Interfaces: Lab Experiments to Real-World Applications*, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

**Screening Rules for Convex Problems**
2016 (unpublished) Submitted

**Multi-view learning on multiparametric PET/MRI quantifies intratumoral heterogeneity and determines therapy efficacy**
World Molecular Imaging Conference, 2016 (talk)

**Unsupervised identification of neural events in local field potentials**
44th Annual Meeting of the Society for Neuroscience (Neuroscience), 2014 (talk)

**Quantifying statistical dependency**
Research Network on Learning Systems Summer School, 2014 (talk)

**Single-Source Domain Adaptation with Target and Conditional Shift**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)

**Higher-Order Tensors in Diffusion Imaging**
In *Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data*, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)

**Fuzzy Fibers: Uncertainty in dMRI Tractography**
In *Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization*, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)

**Nonconvex Proximal Splitting with Computational Errors**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)

**Active Learning - Modern Learning Theory**
In *Encyclopedia of Algorithms*, (Editors: Kao, M.-Y.), Springer Berlin Heidelberg, 2014 (incollection)

**Using a population based Gaussian Mixture Model on fused [18]F-FDG PET and DW-MRI images accurately segments the tumor microenvironment into clinically relevant compartments capable of guiding therapy**
European Molecular Imaging Meeting, 2014 (talk)

**Causal Inference from Passive Observations**
24th Summer School University of Jyväskylā, Finland, August, 2014 (talk)

Bousquet, O.
**Transductive Learning: Motivation, Models, Algorithms**
January 2002 (talk)

**Robust ensemble learning**
In *Advances in Large Margin Classifiers*, pages: 207-220, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D. Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

**Entropy numbers for convex combinations and MLPs**
In *Advances in Large Margin Classifiers*, pages: 369-387, Neural Information Processing Series, (Editors: AJ Smola and PL Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA,, October 2000 (inbook)

**Natural Regularization from Generative Models**
In *Advances in Large Margin Classifiers*, pages: 51-60, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

**Solving Satisfiability Problems with Genetic Algorithms**
In *Genetic Algorithms and Genetic Programming at Stanford 2000*, pages: 206-213, (Editors: Koza, J. R.), Stanford Bookstore, Stanford, CA, USA, June 2000 (inbook)

**Statistical Learning and Kernel Methods**
In *CISM Courses and Lectures, International Centre for Mechanical Sciences Vol.431*, *CISM Courses and Lectures, International Centre for
Mechanical Sciences*, 431(23):3-24, (Editors: G Della Riccia and H-J Lenz and R Kruse), Springer, Vienna, Data Fusion and Perception, 2000 (inbook)

**An Introduction to Kernel-Based Learning Algorithms**
In *Handbook of Neural Network Signal Processing*, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)