Header logo is ei


2018


no image
A virtual reality environment for experiments in assistive robotics and neural interfaces

Bustamante, S.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

PDF [BibTex]

2018

PDF [BibTex]


no image
Optimal Trajectory Generation and Learning Control for Robot Table Tennis

Koc, O.

Technical University Darmstadt, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
Distribution-Dissimilarities in Machine Learning

Simon-Gabriel, C. J.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
Domain Adaptation Under Causal Assumptions

Lechner, T.

Eberhard Karls Universität Tübingen, Germany, 2018 (mastersthesis)

[BibTex]

[BibTex]


no image
Probabilistic Approaches to Stochastic Optimization

Mahsereci, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Reinforcement Learning for High-Speed Robotics with Muscular Actuation

Guist, S.

Ruprecht-Karls-Universität Heidelberg , 2018 (mastersthesis)

[BibTex]

[BibTex]


no image
Probabilistic Ordinary Differential Equation Solvers — Theory and Applications

Schober, M.

Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]


no image
A machine learning approach to taking EEG-based computer interfaces out of the lab

Jayaram, V.

Graduate Training Centre of Neuroscience, IMPRS, Eberhard Karls Universität Tübingen, Germany, 2018 (phdthesis)

[BibTex]

[BibTex]

2012


no image
Support Vector Machines, Support Measure Machines, and Quasar Target Selection

Muandet, K.

Center for Cosmology and Particle Physics (CCPP), New York University, December 2012 (talk)

[BibTex]

2012

[BibTex]


no image
Hilbert Space Embedding for Dirichlet Process Mixtures

Muandet, K.

NIPS Workshop on Confluence between Kernel Methods and Graphical Models, December 2012 (talk)

[BibTex]

[BibTex]


no image
Scalable graph kernels

Shervashidze, N.

Eberhard Karls Universität Tübingen, Germany, October 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Probabilistic Modelling of Expression Variation in Modern eQTL Studies

Zwießele, M.

Eberhard Karls Universität Tübingen, Germany, October 2012 (mastersthesis)

[BibTex]

[BibTex]


no image
Simultaneous small animal PET/MR in activated and resting state reveals multiple brain networks

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
A new PET insert for simultaneous PET/MR small animal imaging

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Evaluation of a new, large field of view, small animal PET/MR system

Hossain, M., Wehrl, H., Lankes, K., Liu, C., Bezrukov, I., Reischl, G., Pichler, B.

50. Jahrestagung der Deutschen Gesellschaft fuer Nuklearmedizin (NuklearMedizin), April 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J.

Technische Universität Darmstadt, Germany, March 2012 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Simultaneous small animal PET/MR reveals different brain networks during stimulation and rest

Wehrl, H., Hossain, M., Lankes, K., Liu, C., Bezrukov, I., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

World Molecular Imaging Congress (WMIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Support Measure Machines for Quasar Target Selection

Muandet, K.

Astro Imaging Workshop, 2012 (talk)

Abstract
In this talk I will discuss the problem of quasar target selection. The objects attributes in astronomy such as fluxes are often subjected to substantial and heterogeneous measurement uncertainties, especially for the medium-redshift between 2.2 and 3.5 quasars which is relatively rare and must be targeted down to g ~ 22 mag. Most of the previous works for quasar target selection includes UV-excess, kernel density estimation, a likelihood approach, and artificial neural network cannot directly deal with the heterogeneous input uncertainties. Recently, extreme deconvolution (XD) has been used to tackle this problem in a well-posed manner. In this work, we present a discriminative approach for quasar target selection that can deal with input uncertainties directly. To do so, we represent each object as a Gaussian distribution whose mean is the object's attribute vector and covariance is the given flux measurement uncertainty. Given a training set of Gaussian distributions, the support measure machines (SMMs) algorithm are trained and used to build the quasar targeting catalog. Preliminary results will also be presented. Joint work with Jo Bovy and Bernhard Sch{\"o}lkopf

Web [BibTex]


no image
PAC-Bayesian Analysis: A Link Between Inference and Statistical Physics

Seldin, Y.

Workshop on Statistical Physics of Inference and Control Theory, 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
PET Performance Measurements of a Next Generation Dedicated Small Animal PET/MR Scanner

Liu, C., Hossain, M., Lankes, K., Bezrukov, I., Wehrl, H., Kolb, A., Judenhofer, M., Pichler, B.

Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Structure and Dynamics of Diffusion Networks

Gomez Rodriguez, M.

Department of Electrical Engineering, Stanford University, 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Blind Deconvolution in Scientific Imaging & Computational Photography

Hirsch, M.

Eberhard Karls Universität Tübingen, Germany, 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
PAC-Bayesian Analysis of Supervised, Unsupervised, and Reinforcement Learning

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at the 29th International Conference on Machine Learning (ICML), 2012 (talk)

Web Web [BibTex]

Web Web [BibTex]


no image
Influence of MR-based attenuation correction on lesions within bone and susceptibility artifact regions

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Pichler, B.

Molekulare Bildgebung (MoBi), 2012 (talk)

[BibTex]

[BibTex]


no image
Structured Apprenticeship Learning

Boularias, A., Kroemer, O., Peters, J.

European Workshop on Reinforcement Learning (EWRL), 2012 (talk)

[BibTex]

[BibTex]


no image
PAC-Bayesian Analysis and Its Applications

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Kernel Bellman Equations in POMDPs

Nishiyama, Y., Boularias, A., Gretton, A., Fukumizu, K.

Technical Committee on Infomation-Based Induction Sciences and Machine Learning (IBISML'12), 2012 (talk)

[BibTex]

[BibTex]


no image
Beta oscillations propagate as traveling waves in the macaque prefrontal cortex

Panagiotaropoulos, T., Besserve, M., Logothetis, N.

42nd Annual Meeting of the Society for Neuroscience (Neuroscience), 2012 (talk)

[BibTex]

[BibTex]


no image
Mining correlated loci at a genome-wide scale

Velkov, V.

Eberhard Karls Universität Tübingen, Germany, 2012 (mastersthesis)

[BibTex]

[BibTex]

2007


no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

Web [BibTex]

2007

Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Web [BibTex]

Web [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

Web [BibTex]

Web [BibTex]


no image
Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration

Hill, NJ.

Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

Abstract
I‘ll present a perspective on Brain-Computer Interface development from T{\"u}bingen. Some of the benefits promised by BCI technology lie in the near foreseeable future, and some further away. Our motivation is to make BCI technology feasible for the people who could benefit from what it has to offer soon: namely, people in the "completely locked-in" state. I‘ll mention some of the challenges of working with this user group, and explain the specific directions they have motivated us to take in developing experimental methods, algorithms, and software.

[BibTex]

[BibTex]


no image
Some Theoretical Aspects of Human Categorization Behavior: Similarity and Generalization

Jäkel, F.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007, passed with "ausgezeichnet", summa cum laude, published online (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory Approaches to Clustering

Jegelka, S.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, November 2007 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Policy Learning for Robotics

Peters, J.

14th International Conference on Neural Information Processing (ICONIP), November 2007 (talk)

Web [BibTex]

Web [BibTex]


no image
Hilbert Space Representations of Probability Distributions

Gretton, A.

2nd Workshop on Machine Learning and Optimization at the ISM, October 2007 (talk)

Abstract
Many problems in unsupervised learning require the analysis of features of probability distributions. At the most fundamental level, we might wish to determine whether two distributions are the same, based on samples from each - this is known as the two-sample or homogeneity problem. We use kernel methods to address this problem, by mapping probability distributions to elements in a reproducing kernel Hilbert space (RKHS). Given a sufficiently rich RKHS, these representations are unique: thus comparing feature space representations allows us to compare distributions without ambiguity. Applications include testing whether cancer subtypes are distinguishable on the basis of DNA microarray data, and whether low frequency oscillations measured at an electrode in the cortex have a different distribution during a neural spike. A more difficult problem is to discover whether two random variables drawn from a joint distribution are independent. It turns out that any dependence between pairs of random variables can be encoded in a cross-covariance operator between appropriate RKHS representations of the variables, and we may test independence by looking at a norm of the operator. We demonstrate this independence test by establishing dependence between an English text and its French translation, as opposed to French text on the same topic but otherwise unrelated. Finally, we show that this operator norm is itself a difference in feature means.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Regression with Intervals

Kashima, H., Yamazaki, K., Saigo, H., Inokuchi, A.

International Workshop on Data-Mining and Statistical Science (DMSS2007), October 2007, JSAI Incentive Award. Talk was given by Hisashi Kashima. (talk)

Web [BibTex]

Web [BibTex]


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Brady, M., Schölkopf, B., Pichler, B.

Joint Molecular Imaging Conference, September 2007 (talk)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Bayesian methods for NMR structure determination

Habeck, M.

29th Annual Discussion Meeting: Magnetic Resonance in Biophysical Chemistry, September 2007 (talk)

Web [BibTex]

Web [BibTex]