Header logo is ei


2015


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

[BibTex]

2015

[BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

[BibTex]

[BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Assessment of brain tissue damage in the Sub-Acute Stroke Region by Multiparametric Imaging using [89-Zr]-Desferal-EPO-PET/MRI

Castaneda, S. G., Katiyar, P., Russo, F., Disselhorst, J. A., Calaminus, C., Poli, S., Maurer, A., Ziemann, U., Pichler, B. J.

World Molecular Imaging Conference, 2015 (talk)

[BibTex]

[BibTex]


no image
Early time point in vivo PET/MR is a promising biomarker for determining efficacy of a novel Db(\alphaEGFR)-scTRAIL fusion protein therapy in a colon cancer model

Divine, M. R., Harant, M., Katiyar, P., Disselhorst, J. A., Bukala, D., Aidone, S., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B. J.

World Molecular Imaging Conference, 2015 (talk)

[BibTex]

[BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

link (url) [BibTex]

link (url) [BibTex]

2013


no image
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience}, year = {2013}, month = {7}, volume = {14}, number = {Supplement 1}, pages = {A1}, (talk)

Web [BibTex]

2013

Web [BibTex]


no image
Proceedings of the 10th European Workshop on Reinforcement Learning, Volume 24

Deisenroth, M., Szepesvári, C., Peters, J.

pages: 173, JMLR, European Workshop On Reinforcement Learning, EWRL, 2013 (proceedings)

Web [BibTex]

Web [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K.

30th International Conference on Machine Learning (ICML2013), 2013 (talk)

PDF [BibTex]

PDF [BibTex]

2011


no image
Combined whole-body PET/MR imaging: MR contrast agents do not affect the quantitative accuracy of PET following attenuation correction

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., Pichler, B., Schwenzer, N., Beyer, T.

(SST15-05 ), 97th Scientific Assemble and Annual Meeting of the Radiological Society of North America (RSNA), December 2011 (talk)

Abstract
PURPOSE Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. We assess additional attenuation of the PET emission signals in the presence of oral and intraveneous (iv) MRCA made up of iron oxide and Gd-chelates, respectively. METHOD AND MATERIALS Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and integrated whole-body PET/MR (Biograph mMR, Siemens) using oral (Lumirem) and intraveneous (Gadovist) MRCA. Reference PET attenuation values were determined on a small-animal PET (Inveon, Siemens) using standard PET transmission imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100% conc.), (c) Gadovist_100 (100%), (d) Gadovist_18 (18%), (e) Gadovist_02 (0.2%), (f) Imeron-400 CT iv-contrast (100%) and (g) Imeron-400 (2.4%). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs. The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1. PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction. RESULTS Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347. Lumirem had little effect on PET attenuation with (C3) being 13% and 10% higher than (C2) on PET/CT and PET/MR, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5% lower than (Sy2) on PET/CT and 1.2% higher than (Sy2) on PET/MR. CONCLUSION MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.

Web [BibTex]

2011

Web [BibTex]


no image
Cooperative Cuts: a new use of submodularity in image segmentation

Jegelka, S.

Second I.S.T. Austria Symposium on Computer Vision and Machine Learning, October 2011 (talk)

Web [BibTex]

Web [BibTex]


no image
Effect of MR Contrast Agents on Quantitative Accuracy of PET in Combined Whole-Body PET/MR Imaging

Lois, C., Bezrukov, I., Schmidt, H., Schwenzer, N., Werner, M., Pichler, B., Kupferschläger, J., Beyer, T.

2011(MIC3-3), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

Abstract
Combined whole-body PET/MR systems are being tested in clinical practice today. Integrated imaging protocols entail the use of MR contrast agents (MRCA) that could bias PET attenuation correction. In this work, we assess the effect of MRCA in PET/MR imaging. We analyze the effect of oral and intravenous MRCA on PET activity after attenuation correction. We conclude that in clinical scenarios, MRCA are not expected to lead to significant attenuation of PET signals, and that attenuation maps are not biased after the ingestion of adequate oral contrasts.

Web [BibTex]

Web [BibTex]


no image
First Results on Patients and Phantoms of a Fully Integrated Clinical Whole-Body PET/MRI

Schmidt, H., Schwenzer, N., Bezrukov, I., Kolb, A., Mantlik, F., Kupferschläger, J., Lois, C., Sauter, A., Brendle, C., Pfannenberg, C., Pichler, B.

2011(J2-8), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

Abstract
First clinical fully integrated whole-body PET/MR scanners are just entering the field. Here, we present studies toward quantification accuracy and variation within the PET field of view of small lesions from our BrainPET/MRI, a dedicated clinical brain scanner which was installed three years ago in Tbingen. Also, we present first results for patient and phantom scans of a fully integral whole-body PET/MRI, which was installed two months ago at our department. The quantification accuracy and homogeneity of the BrainPET-Insert (Siemens Medical Solutions, Germany) installed inside the magnet bore of a clinical 3T MRI scanner (Magnetom TIM Trio, Siemens Medical Solutions, Germany) was evaluated by using eight hollow spheres with inner diameters from 3.95 to 7.86 mm placed at different positions inside a homogeneous cylinder phantom with an 9:1 and 6:1 sphere to background ratio. The quantification accuracy for small lesions at different positions in the PET FoV shows a standard deviation of up to 11% and is acceptable for quantitative brain studies where the homogeneity of quantification on the entire FoV is essental. Image quality and resolution of the new Siemens whole-body PET/MR system (Biograph mMR, Siemens Medical Solutions, Germany) was evaluated according to the NEMA NU2 2007 protocol using a body phantom containing six spheres with inner diameter from 10 to 37 mm at sphere to background ratios of 8:1 and 4:1 and the F-18 point sources located at different positions inside the PET FoV, respectively. The evaluation of the whole-body PET/MR system reveals a good PET image quality and resolution comparable to state-of-the-art clinical PET/CT scanners. First images of patient studies carried out at the whole-body PET/MR are presented highlighting the potency of combined PET/MR imaging.

Web [BibTex]

Web [BibTex]


no image
Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

Lois, C., Kupferschläger, J., Bezrukov, I., Schmidt, H., Werner, M., Mannheim, J., Pichler, B., Schwenzer, N., Beyer, T.

(OP314), Annual Congress of the European Association of Nuclear Medicine (EANM), October 2011 (talk)

Abstract
PURPOSE:Combined PET/MR imaging entails the use of MR contrast agents (MRCA) as part of integrated protocols. MRCA are made up of iron oxide and Gd-chelates for oral and intravenous (iv) application, respectively. We assess additional attenuation of the PET emission signals in the presence of oral and iv MRCA.MATERIALS AND METHODS:Phantom scans were performed on a clinical PET/CT (Biograph HiRez16, Siemens) and an integrated whole-body PET/MR (Biograph mMR, Siemens). Two common MRCA were evaluated: Lumirem (oral) and Gadovist (iv).Reference PET attenuation values were determined on a dedicated small-animal PET (Inveon, Siemens) using equivalent standard PET transmission source imaging (TX). Seven syringes of 5mL were filled with (a) Water, (b) Lumirem_100 (100% concentration), (c) Gadovist_100 (100%), (d) Gadovist_18 (18%), (e) Gadovist_02 (0.2%), (f) Imeron-400 CT iv-contrast (100%) and (g) Imeron-400 (2.4%). The same set of syringes was scanned on CT (Sensation16, Siemens) at 120kVp and 160mAs.The effect of MRCA on the attenuation of PET emission data was evaluated using a 20cm cylinder filled uniformly with [18F]-FDG (FDG) in water (BGD). Three 4.5cm diameter cylinders were inserted into the phantom: (C1) Teflon, (C2) Water+FDG (2:1) and (C3) Lumirem_100+FDG (2:1). Two 50mL syringes filled with Gadovist_02+FDG (Sy1) and water+FDG (Sy2) were attached to the sides of (C1) to mimick the effects of iv-contrast in vessels near bone. Syringe-to-background activity ratio was 4-to-1.PET emission data were acquired for 10min each using the PET/CT and the PET/MR. Images were reconstructed using CT- and MR-based attenuation correction (AC). Since Teflon is not correctly identified on MR, PET(/MR) data were reconstructed using MR-AC and CT-AC.RESULTS:Mean linear PET attenuation (cm-1) on TX was (a) 0.098, (b) 0.098, (c) 0.300, (d) 0.134, (e) 0.095, (f) 0.397 and (g) 0.105. Corresponding CT attenuation (HU) was: (a) 5, (b) 14, (c) 3070, (d) 1040, (e) 13, (f) 3070 and (g) 347.Lumirem had little effect on PET attenuation with (C3) being 13%, 10% and 11% higher than (C2) on PET/CT, PET/MR with MR-AC, and PET/MR with CT-AC, respectively. Gadovist_02 had even smaller effects with (Sy1) being 2.5% lower, 1.2% higher, and 3.5% lower than (Sy2) on PET/CT, PET/MR with MR-AC and PET/MR with CT-AC, respectively.CONCLUSION:MRCA in high and clinically relevant concentrations have attenuation values similar to that of CT contrast and water, respectively. In clinical PET/MR scenarios MRCA are not expected to lead to significant attenuation of the PET emission signals.

Web [BibTex]

Web [BibTex]


no image
Multi-parametric Tumor Characterization and Therapy Monitoring using Simultaneous PET/MRI: initial results for Lung Cancer and GvHD

Sauter, A., Schmidt, H., Gueckel, B., Brendle, C., Bezrukov, I., Mantlik, F., Kolb, A., Mueller, M., Reimold, M., Federmann, B., Hetzel, J., Claussen, C., Pfannenberg, C., Horger, M., Pichler, B., Schwenzer, N.

(T110), 2011 World Molecular Imaging Congress (WMIC), September 2011 (talk)

Abstract
Hybrid imaging modalities such as [18F]FDG-PET/CT are superior in staging of e.g. lung cancer disease compared with stand-alone modalities. Clinical PET/MRI systems are about to enter the field of hybrid imaging and offer potential advantages. One added value could be a deeper insight into the tumor metabolism and tumorigenesis due to the combination of PET and dedicated MR methods such as MRS and DWI. Additionally, therapy monitoring of diffucult to diagnose disease such as chronic sclerodermic GvHD (csGvHD) can potentially be improved by this combination. We have applied PET/MRI in 3 patients with lung cancer and 4 patients with csGvHD before and during therapy. All 3 patients had lung cancer confirmed by histology (2 adenocarcinoma, 1 carcinoid). First, a [18F]FDG-PET/CT was performed with the following parameters: injected dose 351.7±25.1 MBq, uptake time 59.0±2.6 min, 3 min/bed. Subsequently, patients were brought to the PET/MRI imaging facility. The whole-body PET/MRI Biograph mMR system comprises 56 detector cassettes with a 59.4 cm transaxial and 25.8 cm axial FoV. The MRI is a modified Verio system with a magnet bore of 60 cm. The following parameters for PET acquisition were applied: uptake time 121.3±2.3 min, 3 bed positions, 6 min/bed. T1w, T2w, and DWI MR images were recorded simultaneously for each bed. Acquired PET data were reconstructed with an iterative 3D OSEM algorithm using 3 iterations and 21 subsets, Gaussian filter of 3 mm. The 4 patients with GvHD were brought to the brainPET/MRI imaging facility 2:10h-2:28h after tracer injection. A 9 min brainPET-acquisition with simultaneous MRI of the lower extremities was accomplished. MRI examination included T1-weighted (pre and post gadolinium) and T2-weighted sequences. Attenuation correction was calculated based on manual bone segmentation and thresholds for soft tissue, fat and air. Soleus muscle (m), crural fascia (f1) and posterior crural intermuscular septum fascia (f2) were surrounded with ROIs based on the pre-treatment T1-weighted images and coregistered using IRW (Siemens). Fascia-to-muscle ratios for PET (f/m), T1 contrast uptake (T1_post-contrast_f-pre-contrast_f/post-contrast_m-pre-contrast_m) and T2 (T2_f/m) were calculated. Both patients with adenocarcinoma show a lower ADC value compared with the carcinoid patient suggesting a higher cellularity. This is also reflected in FDG-PET with higher SUV values. Our initial results reveal that PET/MRI can provide complementary information for a profound tumor characterization and therapy monitoring. The high soft tissue contrast provided by MRI is valuable for the assessment of the fascial inflammation. While in the first patient FDG and contrast uptake as well as edema, represented by T2 signals, decreased with ongoing therapy, all parameters remained comparatively stable in the second patient. Contrary to expectations, an increase in FDG uptake of patient 3 and 4 was accompanied by an increase of the T2 signals, but a decrease in contrast uptake. These initial results suggest that PET/MRI provides complementary information of the complex disease mechanisms in fibrosing disorders.

Web [BibTex]

Web [BibTex]


no image
Statistical Image Analysis and Percolation Theory

Langovoy, M., Habeck, M., Schölkopf, B.

2011 Joint Statistical Meetings (JSM), August 2011 (talk)

Abstract
We develop a novel method for detection of signals and reconstruction of images in the presence of random noise. The method uses results from percolation theory. We specifically address the problem of detection of multiple objects of unknown shapes in the case of nonparametric noise. The noise density is unknown and can be heavy-tailed. The objects of interest have unknown varying intensities. No boundary shape constraints are imposed on the objects, only a set of weak bulk conditions is required. We view the object detection problem as hypothesis testing for discrete statistical inverse problems. We present an algorithm that allows to detect greyscale objects of various shapes in noisy images. We prove results on consistency and algorithmic complexity of our procedures. Applications to cryo-electron microscopy are presented.

Web [BibTex]

Web [BibTex]


no image
JMLR Workshop and Conference Proceedings Volume 19: COLT 2011

Kakade, S., von Luxburg, U.

pages: 834, MIT Press, Cambridge, MA, USA, 24th Annual Conference on Learning Theory , June 2011 (proceedings)

Web [BibTex]

Web [BibTex]


no image
Cooperative Cuts

Jegelka, S.

COSA Workshop: Combinatorial Optimization, Statistics, and Applications, March 2011 (talk)

Abstract
Combinatorial problems with submodular cost functions have recently drawn interest. In a standard combinatorial problem, the sum-of-weights cost is replaced by a submodular set function. The result is a powerful model that is though very hard. In this talk, I will introduce cooperative cuts, minimum cuts with submodular edge weights. I will outline methods to approximately solve this problem, and show an application in computer vision. If time permits, the talk will also sketch regret-minimizing online algorithms for submodular-cost combinatorial problems. This is joint work with Jeff Bilmes (University of Washington).

Web [BibTex]

Web [BibTex]

2009


no image
Machine Learning for Brain-Computer Interfaces

Hill, NJ.

Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS (AMD), December 2009 (talk)

Abstract
Brain-computer interfaces (BCI) aim to be the ultimate in assistive technology: decoding a user‘s intentions directly from brain signals without involving any muscles or peripheral nerves. Thus, some classes of BCI potentially offer hope for users with even the most extreme cases of paralysis, such as in late-stage Amyotrophic Lateral Sclerosis, where nothing else currently allows communication of any kind. Other lines in BCI research aim to restore lost motor function in as natural a way as possible, reconnecting and in some cases re-training motor-cortical areas to control prosthetic, or previously paretic, limbs. Research and development are progressing on both invasive and non-invasive fronts, although BCI has yet to make a breakthrough to widespread clinical application. The high-noise high-dimensional nature of brain-signals, particularly in non-invasive approaches and in patient populations, make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since "it doesn‘t matter what classifier you use once you‘ve done your preprocessing right and extracted the right features." I shall show a few examples of how this runs counter to both the empirical reality and the spirit of what needs to be done to bring BCI into clinical application. Along the way I‘ll highlight some of the interesting problems that remain open for machine-learners.

PDF Web Web [BibTex]

2009

PDF Web Web [BibTex]


no image
PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y.

NIPS Workshop on "Clustering: Science or Art? Towards Principled Approaches", December 2009 (talk)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of "how many clusters are present in the data?", and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering‘s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

PDF Web Web [BibTex]

PDF Web Web [BibTex]


no image
Semi-supervised Kernel Canonical Correlation Analysis of Human Functional Magnetic Resonance Imaging Data

Shelton, JA.

Women in Machine Learning Workshop (WiML), December 2009 (talk)

Abstract
Kernel Canonical Correlation Analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, KCCA learns representations tied more closely to underlying process generating the the data and can ignore high-variance noise directions. However, for data where acquisition in a given modality is expensive or otherwise limited, KCCA may suffer from small sample effects. We propose to use semi-supervised Laplacian regularization to utilize data that are present in only one modality. This manifold learning approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned and such data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of KCCA on human fMRI data, with regression to single and multivariate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, Laplacian regularization improved performance whereas the semi-supervised variants of KCCA yielded the best performance. We additionally analyze the weights learned by the regression in order to infer brain regions that are important during different types of visual processing.

PDF Web [BibTex]


no image
Event-Related Potentials in Brain-Computer Interfacing

Hill, NJ.

Invited lecture on the bachelor & masters course "Introduction to Brain-Computer Interfacing", October 2009 (talk)

Abstract
An introduction to event-related potentials with specific reference to their use in brain-computer interfacing applications and research.

PDF [BibTex]

PDF [BibTex]


no image
BCI2000 and Python

Hill, NJ.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
A tutorial, with exercises, on how to integrate your own Python code with the BCI2000 software package.

PDF [BibTex]

PDF [BibTex]


no image
Implementing a Signal Processing Filter in BCI2000 Using C++

Hill, NJ., Mellinger, J.

Invited lecture at the 5th International BCI2000 Workshop, October 2009 (talk)

Abstract
This tutorial shows how the functionality of the BCI2000 software package can be extended with one‘s own code, using BCI2000‘s C++ API.

PDF [BibTex]

PDF [BibTex]


no image
Randomized algorithms for statistical image analysis based on percolation theory

Davies, P., Langovoy, M., Wittich, O.

27th European Meeting of Statisticians (EMS), July 2009 (talk)

Abstract
We propose a novel probabilistic method for detection of signals and reconstruction of images in the presence of random noise. The method uses results from percolation and random graph theories (see Grimmett (1999)). We address the problem of detection and estimation of signals in situations where the signal-to-noise ratio is particularly low. We present an algorithm that allows to detect objects of various shapes in noisy images. The algorithm has linear complexity and exponential accuracy. Our algorithm substantially di ers from wavelets-based algorithms (see Arias-Castro et.al. (2005)). Moreover, we present an algorithm that produces a crude estimate of an object based on the noisy picture. This algorithm also has linear complexity and is appropriate for real-time systems. We prove results on consistency and algorithmic complexity of our procedures.

Web PDF [BibTex]

Web PDF [BibTex]


no image
Learning Motor Primitives for Robotics

Kober, J., Peters, J., Oztop, E.

Advanced Telecommunications Research Center ATR, June 2009 (talk)

Abstract
The acquisition and self-improvement of novel motor skills is among the most important problems in robotics. Motor primitives offer one of the most promising frameworks for the application of machine learning techniques in this context. Employing the Dynamic Systems Motor primitives originally introduced by Ijspeert et al. (2003), appropriate learning algorithms for a concerted approach of both imitation and reinforcement learning are presented. Using these algorithms new motor skills, i.e., Ball-in-a-Cup, Ball-Paddling and Dart-Throwing, are learned.

[BibTex]

[BibTex]


no image
Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer

Lampert, C.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), June 2009 (talk)

Web [BibTex]

Web [BibTex]

2008


no image
BCPy2000

Hill, N., Schreiner, T., Puzicha, C., Farquhar, J.

Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

Web [BibTex]

2008

Web [BibTex]


no image
Logistic Regression for Graph Classification

Shervashidze, N., Tsuda, K.

NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (talk)

Abstract
In this paper we deal with graph classification. We propose a new algorithm for performing sparse logistic regression for graphs, which is comparable in accuracy with other methods of graph classification and produces probabilistic output in addition. Sparsity is required for the reason of interpretability, which is often necessary in domains such as bioinformatics or chemoinformatics.

Web [BibTex]

Web [BibTex]


no image
New Projected Quasi-Newton Methods with Applications

Sra, S.

Microsoft Research Tech-talk, December 2008 (talk)

Abstract
Box-constrained convex optimization problems are central to several applications in a variety of fields such as statistics, psychometrics, signal processing, medical imaging, and machine learning. Two fundamental examples are the non-negative least squares (NNLS) problem and the non-negative Kullback-Leibler (NNKL) divergence minimization problem. The non-negativity constraints are usually based on an underlying physical restriction, for e.g., when dealing with applications in astronomy, tomography, statistical estimation, or image restoration, the underlying parameters represent physical quantities such as concentration, weight, intensity, or frequency counts and are therefore only interpretable with non-negative values. Several modern optimization methods can be inefficient for simple problems such as NNLS and NNKL as they are really designed to handle far more general and complex problems. In this work we develop two simple quasi-Newton methods for solving box-constrained (differentiable) convex optimization problems that utilize the well-known BFGS and limited memory BFGS updates. We position our method between projected gradient (Rosen, 1960) and projected Newton (Bertsekas, 1982) methods, and prove its convergence under a simple Armijo step-size rule. We illustrate our method by showing applications to: Image deblurring, Positron Emission Tomography (PET) image reconstruction, and Non-negative Matrix Approximation (NMA). On medium sized data we observe performance competitive to established procedures, while for larger data the results are even better.

PDF [BibTex]

PDF [BibTex]


no image
MR-Based PET Attenuation Correction: Initial Results for Whole Body

Hofmann, M., Steinke, F., Aschoff, P., Lichy, M., Brady, M., Schölkopf, B., Pichler, B.

Medical Imaging Conference, October 2008 (talk)

[BibTex]

[BibTex]


no image
Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches

Gretton, A., Györfi, L.

19th International Conference on Algorithmic Learning Theory (ALT08), October 2008 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Data-driven goodness-of-fit tests

Langovoy, M.

2008 Barcelona Conference on Asymptotic Statistics (BAS), September 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
mGene: A Novel Discriminative Gene Finder

Schweikert, G., Zeller, G., Zien, A., Behr, J., Sonnenburg, S., Philips, P., Ong, C., Rätsch, G.

Worm Genomics and Systems Biology meeting, July 2008 (talk)

[BibTex]

[BibTex]


no image
Discovering Common Sequence Variation in Arabidopsis thaliana

Rätsch, G., Clark, R., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthman, N., Hu, T., Fu, G., Hinds, D., Cheng, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Ecker, J., Weigel, D., Schneeberger, K., Bohlen, A.

16th Annual International Conference Intelligent Systems for Molecular Biology (ISMB), July 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
CogRob 2008: The 6th International Cognitive Robotics Workshop

Lespérance, Y., Lakemeyer, G., Peters, J., Pirri, F.

Proceedings of the 6th International Cognitive Robotics Workshop (CogRob 2008), pages: 35, Patras University Press, Patras, Greece, 6th International Cognitive Robotics Workshop (CogRob), July 2008 (proceedings)

Web [BibTex]

Web [BibTex]


no image
Coding Theory in Brain-Computer Interfaces

Martens, SMM.

Soria Summerschool on Computational Mathematics "Algebraic Coding Theory" (S3CM), July 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Motor Skill Learning for Cognitive Robotics

Peters, J.

6th International Cognitive Robotics Workshop (CogRob), July 2008 (talk)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can learn tasks triggered by environmental context or higher level instruction. However, learning techniques have yet to live up to this promise as only few methods manage to scale to high-dimensional manipulator or humanoid robots. In this tutorial, we give a general overview on motor skill learning for cognitive robotics using research at ATR, USC, CMU and Max-Planck in order to illustrate the problems in motor skill learning. For doing so, we discuss task-appropriate representations and algorithms for learning robot motor skills. Among the topics are the learning basic movements or motor primitives by imitation and reinforcement learning, learning rhytmic and discrete movements, fast regression methods for learning inverse dynamics and setups for learning task-space policies. Examples on various robots, e.g., SARCOS DB, the SARCOS Master Arm, BDI Little Dog and a Barrett WAM, are shown and include Ball-in-a-Cup, T-Ball, Juggling, Devil-Sticking, Operational Space Control and many others.

Web [BibTex]

Web [BibTex]


no image
Painless Embeddings of Distributions: the Function Space View (Part 1)

Fukumizu, K., Gretton, A., Smola, A.

25th International Conference on Machine Learning (ICML), July 2008 (talk)

Abstract
This tutorial will give an introduction to the recent understanding and methodology of the kernel method: dealing with higher order statistics by embedding painlessly random variables/probability distributions. In the early days of kernel machines research, the "kernel trick" was considered a useful way of constructing nonlinear algorithms from linear ones. More recently, however, it has become clear that a potentially more far reaching use of kernels is as a linear way of dealing with higher order statistics by embedding distributions in a suitable reproducing kernel Hilbert space (RKHS). Notably, unlike the straightforward expansion of higher order moments or conventional characteristic function approach, the use of kernels or RKHS provides a painless, tractable way of embedding distributions. This line of reasoning leads naturally to the questions: what does it mean to embed a distribution in an RKHS? when is this embedding injective (and thus, when do different distributions have unique mappings)? what implications are there for learning algorithms that make use of these embeddings? This tutorial aims at answering these questions. There are a great variety of applications in machine learning and computer science, which require distribution estimation and/or comparison.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement Learning for Robotics

Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL), July 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Multi-Classification by Categorical Features via Clustering

Seldin, Y.

25th International Conference on Machine Learning (ICML), June 2008 (talk)

Abstract
We derive a generalization bound for multi-classification schemes based on grid clustering in categorical parameter product spaces. Grid clustering partitions the parameter space in the form of a Cartesian product of partitions for each of the parameters. The derived bound provides a means to evaluate clustering solutions in terms of the generalization power of a built-on classifier. For classification based on a single feature the bound serves to find a globally optimal classification rule. Comparison of the generalization power of individual features can then be used for feature ranking. Our experiments show that in this role the bound is much more precise than mutual information or normalized correlation indices.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Thin-Plate Splines Between Riemannian Manifolds

Steinke, F., Hein, M., Schölkopf, B.

Workshop on Geometry and Statistics of Shapes, June 2008 (talk)

Abstract
With the help of differential geometry we describe a framework to define a thin-plate spline like energy for maps between arbitrary Riemannian manifolds. The so-called Eells energy only depends on the intrinsic geometry of the input and output manifold, but not on their respective representation. The energy can then be used for regression between manifolds, we present results for cases where the outputs are rotations, sets of angles, or points on 3D surfaces. In the future we plan to also target regression where the output is an element of "shape space", understood as a Riemannian manifold. One could also further explore the meaning of the Eells energy when applied to diffeomorphisms between shapes, especially with regard to its potential use as a distance measure between shapes that does not depend on the embedding or the parametrisation of the shapes.

Web [BibTex]

Web [BibTex]


no image
Learning resolved velocity control

Peters, J.

2008 IEEE International Conference on Robotics and Automation (ICRA), May 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Bayesian methods for protein structure determination

Habeck, M.

Machine Learning in Structural Bioinformatics, April 2008 (talk)

Web [BibTex]

Web [BibTex]