Header logo is ei


2015


no image
Diversity of sharp wave-ripples in the CA1 of the macaque hippocampus and their brain wide signatures

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

45th Annual Meeting of the Society for Neuroscience (Neuroscience 2015), October 2015 (poster)

link (url) [BibTex]

2015

link (url) [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

[BibTex]

[BibTex]


no image
Retrospective rigid motion correction of undersampled MRI data

Loktyushin, A., Babayeva, M., Gallichan, D., Krueger, G., Scheffler, K., Kober, T.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

[BibTex]

[BibTex]


no image
Improving Quantitative Susceptibility and R2* Mapping by Applying Retrospective Motion Correction

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J. R.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

[BibTex]

[BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

[BibTex]

[BibTex]


no image
Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Assessment of brain tissue damage in the Sub-Acute Stroke Region by Multiparametric Imaging using [89-Zr]-Desferal-EPO-PET/MRI

Castaneda, S. G., Katiyar, P., Russo, F., Disselhorst, J. A., Calaminus, C., Poli, S., Maurer, A., Ziemann, U., Pichler, B. J.

World Molecular Imaging Conference, 2015 (talk)

[BibTex]

[BibTex]


no image
Early time point in vivo PET/MR is a promising biomarker for determining efficacy of a novel Db(\alphaEGFR)-scTRAIL fusion protein therapy in a colon cancer model

Divine, M. R., Harant, M., Katiyar, P., Disselhorst, J. A., Bukala, D., Aidone, S., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B. J.

World Molecular Imaging Conference, 2015 (talk)

[BibTex]

[BibTex]


no image
Assessment of tumor heterogeneity using unsupervised graph based clustering of multi-modality imaging data

Katiyar, P., Divine, M. R., Pichler, B. J., Disselhorst, J. A.

European Molecular Imaging Meeting, 2015 (poster)

[BibTex]

[BibTex]


no image
Disparity estimation from a generative light field model

Köhler, R., Schölkopf, B., Hirsch, M.

IEEE International Conference on Computer Vision (ICCV 2015), Workshop on Inverse Rendering, 2015, Note: This work has been presented as a poster and is not included in the workshop proceedings. (poster)

[BibTex]

[BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

link (url) [BibTex]

link (url) [BibTex]

2012


no image
Support Vector Machines, Support Measure Machines, and Quasar Target Selection

Muandet, K.

Center for Cosmology and Particle Physics (CCPP), New York University, December 2012 (talk)

[BibTex]

2012

[BibTex]


no image
Hilbert Space Embedding for Dirichlet Process Mixtures

Muandet, K.

NIPS Workshop on Confluence between Kernel Methods and Graphical Models, December 2012 (talk)

[BibTex]

[BibTex]


no image
Simultaneous small animal PET/MR in activated and resting state reveals multiple brain networks

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.

20th Annual Scientific Meeting ISMRM, May 2012 (poster)

Abstract
Patient motion in the scanner is one of the most challenging problems in MRI. We propose a new retrospective motion correction method for which no tracking devices or specialized sequences are required. We seek the motion parameters such that the image gradients in the spatial domain become sparse. We then use these parameters to invert the motion and recover the sharp image. In our experiments we acquired 2D TSE images and 3D FLASH/MPRAGE volumes of the human head. Major quality improvements are possible in the 2D case and substantial improvements in the 3D case.

Web [BibTex]

Web [BibTex]


no image
A new PET insert for simultaneous PET/MR small animal imaging

Wehrl, H., Lankes, K., Hossain, M., Bezrukov, I., Liu, C., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

20th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Evaluation of a new, large field of view, small animal PET/MR system

Hossain, M., Wehrl, H., Lankes, K., Liu, C., Bezrukov, I., Reischl, G., Pichler, B.

50. Jahrestagung der Deutschen Gesellschaft fuer Nuklearmedizin (NuklearMedizin), April 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Simultaneous small animal PET/MR reveals different brain networks during stimulation and rest

Wehrl, H., Hossain, M., Lankes, K., Liu, C., Bezrukov, I., Martirosian, P., Reischl, G., Schick, F., Pichler, B.

World Molecular Imaging Congress (WMIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Identifying endogenous rhythmic spatio-temporal patterns in micro-electrode array recordings

Besserve, M., Panagiotaropoulos, T., Crocker, B., Kapoor, V., Tolias, A., Panzeri, S., Logothetis, N.

9th annual Computational and Systems Neuroscience meeting (Cosyne), 2012 (poster)

[BibTex]

[BibTex]


no image
Reconstruction using Gaussian mixture models

Joubert, P., Habeck, M.

2012 Gordon Research Conference on Three-Dimensional Electron Microscopy (3DEM), 2012 (poster)

Web [BibTex]

Web [BibTex]


no image
Support Measure Machines for Quasar Target Selection

Muandet, K.

Astro Imaging Workshop, 2012 (talk)

Abstract
In this talk I will discuss the problem of quasar target selection. The objects attributes in astronomy such as fluxes are often subjected to substantial and heterogeneous measurement uncertainties, especially for the medium-redshift between 2.2 and 3.5 quasars which is relatively rare and must be targeted down to g ~ 22 mag. Most of the previous works for quasar target selection includes UV-excess, kernel density estimation, a likelihood approach, and artificial neural network cannot directly deal with the heterogeneous input uncertainties. Recently, extreme deconvolution (XD) has been used to tackle this problem in a well-posed manner. In this work, we present a discriminative approach for quasar target selection that can deal with input uncertainties directly. To do so, we represent each object as a Gaussian distribution whose mean is the object's attribute vector and covariance is the given flux measurement uncertainty. Given a training set of Gaussian distributions, the support measure machines (SMMs) algorithm are trained and used to build the quasar targeting catalog. Preliminary results will also be presented. Joint work with Jo Bovy and Bernhard Sch{\"o}lkopf

Web [BibTex]


no image
PAC-Bayesian Analysis: A Link Between Inference and Statistical Physics

Seldin, Y.

Workshop on Statistical Physics of Inference and Control Theory, 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
PET Performance Measurements of a Next Generation Dedicated Small Animal PET/MR Scanner

Liu, C., Hossain, M., Lankes, K., Bezrukov, I., Wehrl, H., Kolb, A., Judenhofer, M., Pichler, B.

Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), 2012 (talk)

[BibTex]

[BibTex]


no image
Learning from Distributions via Support Measure Machines

Muandet, K., Fukumizu, K., Dinuzzo, F., Schölkopf, B.

26th Annual Conference on Neural Information Processing Systems (NIPS), 2012 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Juggling Increases Interhemispheric Brain Connectivity: A Visual and Quantitative dMRI Study.

Schultz, T., Gerber, P., Schmidt-Wilcke, T.

Vision, Modeling and Visualization (VMV), 2012 (poster)

[BibTex]

[BibTex]


no image
PAC-Bayesian Analysis of Supervised, Unsupervised, and Reinforcement Learning

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at the 29th International Conference on Machine Learning (ICML), 2012 (talk)

Web Web [BibTex]

Web Web [BibTex]


no image
The geometry and statistics of geometric trees

Feragen, A., Lo, P., de Bruijne, M., Nielsen, M., Lauze, F.

T{\"u}bIt day of bioinformatics, June, 2012 (poster)

[BibTex]

[BibTex]


no image
Influence of MR-based attenuation correction on lesions within bone and susceptibility artifact regions

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Brendle, C., Pichler, B.

Molekulare Bildgebung (MoBi), 2012 (talk)

[BibTex]

[BibTex]


no image
Structured Apprenticeship Learning

Boularias, A., Kroemer, O., Peters, J.

European Workshop on Reinforcement Learning (EWRL), 2012 (talk)

[BibTex]

[BibTex]


no image
PAC-Bayesian Analysis and Its Applications

Seldin, Y., Laviolette, F., Shawe-Taylor, J.

Tutorial at The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2012 (talk)

Web [BibTex]

Web [BibTex]


no image
Therapy monitoring of patients with chronic sclerodermic graft-versus-host-disease using PET/MRI

Sauter, A., Schmidt, H., Mantlik, F., Kolb, A., Federmann, B., Bethge, W., Reimold, M., Pfannenberg, C., Pichler, B., Horger, M.

2012 SNM Annual Meeting, 2012 (poster)

Web [BibTex]

Web [BibTex]


no image
Centrality of the Mammalian Functional Brain Network

Besserve, M., Bartels, A., Murayama, Y., Logothetis, N.

42nd Annual Meeting of the Society for Neuroscience (Neuroscience), 2012 (poster)

[BibTex]

[BibTex]


no image
Kernel Mean Embeddings of POMDPs

Nishiyama, Y., Boularias, A., Gretton, A., Fukumizu, K.

21st Machine Learning Summer School , 2012 (poster)

[BibTex]

[BibTex]


no image
Kernel Bellman Equations in POMDPs

Nishiyama, Y., Boularias, A., Gretton, A., Fukumizu, K.

Technical Committee on Infomation-Based Induction Sciences and Machine Learning (IBISML'12), 2012 (talk)

[BibTex]

[BibTex]


no image
Semi-Supervised Domain Adaptation with Copulas

Lopez-Paz, D., Hernandez-Lobato, J., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2012 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Evaluation of Whole-Body MR-Based Attenuation Correction in Bone and Soft Tissue Lesions

Bezrukov, I., Mantlik, F., Schmidt, H., Schwenzer, N., Brendle, C., Schölkopf, B., Pichler, B.

Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), 2012 (poster)

[BibTex]

[BibTex]


no image
Beta oscillations propagate as traveling waves in the macaque prefrontal cortex

Panagiotaropoulos, T., Besserve, M., Logothetis, N.

42nd Annual Meeting of the Society for Neuroscience (Neuroscience), 2012 (talk)

[BibTex]

[BibTex]


no image
The PET Performance Measurements of A Next Generation Dedicated Small Animal PET/MR Scanner

Liu, C., Hossain, M., Bezrukov, I., Wehrl, H., Kolb, A., Judenhofer, M., Pichler, B.

World Molecular Imaging Congress (WMIC), 2012 (poster)

[BibTex]

[BibTex]

2007


no image
Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism

Saigo, H., Hattori, M., Tsuda, K.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Secondary metabolic pathway in plant is important for finding druggable candidate enzymes. However, there are many enzymes whose functions are still undiscovered especially in organism-specific metabolic pathways. We propose reaction graph kernels for automatically assigning the EC numbers to unknown enzymatic reactions in a metabolic network. Experiments are carried out on KEGG/REACTION database and our method successfully predicted the first three digits of the EC number with 83% accuracy.We also exhaustively predicted missing enzymatic functions in the plant secondary metabolism pathways, and evaluated our results in biochemical validity.

Web [BibTex]

2007

Web [BibTex]


no image
Positional Oligomer Importance Matrices

Sonnenburg, S., Zien, A., Philips, P., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
At the heart of many important bioinformatics problems, such as gene finding and function prediction, is the classification of biological sequences, above all of DNA and proteins. In many cases, the most accurate classifiers are obtained by training SVMs with complex sequence kernels, for instance for transcription starts or splice sites. However, an often criticized downside of SVMs with complex kernels is that it is very hard for humans to understand the learned decision rules and to derive biological insights from them. To close this gap, we introduce the concept of positional oligomer importance matrices (POIMs) and develop an efficient algorithm for their computation. We demonstrate how they overcome the limitations of sequence logos, and how they can be used to find relevant motifs for different biological phenomena in a straight-forward way. Note that the concept of POIMs is not limited to interpreting SVMs, but is applicable to general k−mer based scoring systems.

Web [BibTex]

Web [BibTex]


no image
Machine Learning Algorithms for Polymorphism Detection

Schweikert, G., Zeller, G., Weigel, D., Schölkopf, B., Rätsch, G.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Web [BibTex]

Web [BibTex]


no image
An Automated Combination of Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions.We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We utilize an extension of the multiclass support vector machine (SVM)method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets, and show that we perform better than the current state of the art. Furthermore, our method provides some insights as to which features are most useful for determining subcellular localization, which are in agreement with biological reasoning.

Web [BibTex]

Web [BibTex]


no image
Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration

Hill, NJ.

Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

Abstract
I‘ll present a perspective on Brain-Computer Interface development from T{\"u}bingen. Some of the benefits promised by BCI technology lie in the near foreseeable future, and some further away. Our motivation is to make BCI technology feasible for the people who could benefit from what it has to offer soon: namely, people in the "completely locked-in" state. I‘ll mention some of the challenges of working with this user group, and explain the specific directions they have motivated us to take in developing experimental methods, algorithms, and software.

[BibTex]

[BibTex]


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Brady, M., Schölkopf, B., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M16-6):1-2, November 2007 (poster)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Estimating receptive fields without spike-triggering

Macke, J., Zeck, G., Bethge, M.

37th annual Meeting of the Society for Neuroscience (Neuroscience 2007), 37(768.1):1, November 2007 (poster)

Web [BibTex]

Web [BibTex]