50 results
(View BibTeX file of all listed publications)

**Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism**
*53rd Annual Allerton Conference on Communication, Control, and Computing*, September 2015 (talk)

**Kernel methods in medical imaging**
In *Handbook of Biomedical Imaging*, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

**Independence of cause and mechanism in brain networks**
*DALI workshop on Networks: Processes and Causality*, April 2015 (talk)

**Information-Theoretic Implications of Classical and Quantum Causal Structures **
18th Conference on Quantum Information Processing (QIP), 2015 (talk)

**Assessment of brain tissue damage in the Sub-Acute Stroke Region by Multiparametric Imaging using [89-Zr]-Desferal-EPO-PET/MRI**
World Molecular Imaging Conference, 2015 (talk)

**Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data**
In *Visualization and Processing of Higher Order Descriptors for Multi-Valued Data*, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

**Early time point in vivo PET/MR is a promising biomarker for determining efficacy of a novel Db(\alphaEGFR)-scTRAIL fusion protein therapy in a colon cancer model**
World Molecular Imaging Conference, 2015 (talk)

**Justifying Information-Geometric Causal Inference**
In *Measures of Complexity: Festschrift for Alexey Chervonenkis*, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

**The search for single exoplanet transits in the Kepler light curves**
*IAU General Assembly*, 22, pages: 2258352, 2015 (talk)

**BCPy2000**
Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

**Logistic Regression for Graph Classification**
NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (talk)

**New Projected Quasi-Newton Methods with Applications**
Microsoft Research Tech-talk, December 2008 (talk)

**MR-Based PET Attenuation Correction: Initial Results for Whole Body**
Medical Imaging Conference, October 2008 (talk)

**Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches**
19th International Conference on Algorithmic Learning Theory (ALT08), October 2008 (talk)

**Data-driven goodness-of-fit tests**
2008 Barcelona Conference on Asymptotic Statistics (BAS), September 2008 (talk)

**mGene: A Novel Discriminative Gene Finder**
Worm Genomics and Systems Biology meeting, July 2008 (talk)

**Discovering Common Sequence Variation in
Arabidopsis thaliana**
16th Annual International Conference Intelligent Systems for Molecular Biology (ISMB), July 2008 (talk)

**Coding Theory in Brain-Computer Interfaces**
Soria Summerschool on Computational Mathematics "Algebraic Coding Theory" (S3CM), July 2008 (talk)

**Motor Skill Learning for Cognitive Robotics**
6th International Cognitive Robotics Workshop (CogRob), July 2008 (talk)

**Painless Embeddings of Distributions: the Function Space View (Part 1)**
25th International Conference on Machine Learning (ICML), July 2008 (talk)

**Reinforcement Learning for Robotics**
8th European Workshop on Reinforcement Learning for Robotics (EWRL), July 2008 (talk)

**Multi-Classification by Categorical Features via Clustering**
25th International Conference on Machine Learning (ICML), June 2008 (talk)

**Thin-Plate Splines Between Riemannian Manifolds**
Workshop on Geometry and Statistics of Shapes, June 2008 (talk)

**New Frontiers in Characterizing Structure and Dynamics by NMR**
In *Computational Structural Biology: Methods and Applications*, pages: 655-680, (Editors: Schwede, T. , M. C. Peitsch), World Scientific, New Jersey, NJ, USA, May 2008 (inbook)

**Learning resolved velocity control**
2008 IEEE International Conference on Robotics and Automation (ICRA), May 2008 (talk)

**Bayesian methods for protein structure determination**
Machine Learning in Structural Bioinformatics, April 2008 (talk)

**A Robot System for Biomimetic Navigation: From Snapshots to Metric Embeddings of View Graphs**
In *Robotics and Cognitive Approaches to Spatial Mapping*, pages: 297-314, Springer Tracts in Advanced Robotics ; 38, (Editors: Jefferies, M.E. , W.-K. Yeap), Springer, Berlin, Germany, 2008 (inbook)

**A Kernel Method for the Two-Sample-Problem**
20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

**Ab-initio gene finding using machine learning**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Reinforcement Learning by Reward-Weighted Regression**
NIPS Workshop: Towards a New Reinforcement Learning? , December 2006 (talk)

**Graph boosting for molecular QSAR analysis**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions**
NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

**Learning Optimal EEG Features Across Time, Frequency and Space**
NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

**Semi-Supervised Learning**
Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

**Prediction of Protein Function from Networks**
In *Semi-Supervised Learning*, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**Discrete Regularization**
In *Semi-supervised Learning*, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images**
IEEE Medical Imaging Conference, November 2006 (talk)

**Semi-Supervised Support Vector Machines and Application to Spam Filtering**
ECML Discovery Challenge Workshop, September 2006 (talk)

**Inferential Structure Determination: Probabilistic determination and validation of NMR structures**
Gordon Research Conference on Computational Aspects of Biomolecular
NMR, September 2006 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
2nd ISCB Student Council Symposium, August 2006 (talk)

**Inferential structure determination: Overview and new developments**
Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

**MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models**
ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

**Sampling for non-conjugate infinite latent feature models**
(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

**An Inventory of Sequence Polymorphisms For Arabidopsis**
17th International Conference on Arabidopsis Research, April 2006 (talk)

**Machine Learning and Applications in Biology**
6th Course in Bioinformatics for Molecular Biologist, March 2006 (talk)

**Combining a Filter Method with SVMs**
In *Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207*, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)

**Embedded methods**
In *Feature Extraction: Foundations and Applications*, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)

**Extracting egomotion from optic flow: limits of accuracy and neural matched filters**
In pages: 143-168, Springer, Berlin, 2001 (inbook)

**Kernel principal component analysis.**
In *Advances in Kernel Methods—Support Vector Learning*, pages: 327-352, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)

**Entropy numbers, operators and support vector kernels.**
In *Advances in Kernel Methods - Support Vector Learning*, pages: 127-144, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)