69 results
(View BibTeX file of all listed publications)

**Robot Learning for Muscular Robots**
Technical University Darmstadt, Germany, December 2019 (phdthesis)

**Real Time Probabilistic Models for Robot Trajectories**
Technical University Darmstadt, Germany, December 2019 (phdthesis)

**Learning Transferable Representations**
University of Cambridge, UK, 2019 (phdthesis)

**Sample-efficient deep reinforcement learning for continuous control**
University of Cambridge, UK, 2019 (phdthesis)

**Formally justified and modular Bayesian inference for probabilistic programs**
University of Cambridge, UK, 2019 (phdthesis)

**Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing**
Technical University of Munich, Germany, 2019 (mastersthesis)

**Pragmatism and Variable Transformations in Causal Modelling**
ETH Zurich, 2019 (phdthesis)

**Quantification of tumor heterogeneity using PET/MRI and machine learning**
Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

**Advances in Probabilistic Modelling: Sparse Gaussian Processes, Autoencoders, and Few-shot Learning**
University of Cambridge, UK, 2019 (phdthesis)

**Nonlinear functional causal models for distinguishing cause from effect**
In *Statistics and Causality: Methods for Applied Empirical Research*, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

**Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke**
World Molecular Imaging Conference, 2016 (talk)

**Advances in computational imaging: Benchmarking Deblurring Algorithms, Deep Neural Inpainting, Depth Estimation from Light Fields**
Eberhard Karls Universität Tübingen, Germany, 2016 (phdthesis)

**A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis**
In *Brain-Computer Interfaces: Lab Experiments to Real-World Applications*, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

**Tractable Structured Prediction using the Permutohedral Lattice**
ETH Zurich, 2016 (phdthesis)

**Multi-view learning on multiparametric PET/MRI quantifies intratumoral heterogeneity and determines therapy efficacy**
World Molecular Imaging Conference, 2016 (talk)

**easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies**
Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

**Causal Discovery Beyond Conditional Independences**
Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

**Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism**
*53rd Annual Allerton Conference on Communication, Control, and Computing*, September 2015 (talk)

**From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding**
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

**Machine Learning Approaches to Image Deconvolution**
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

**Kernel methods in medical imaging**
In *Handbook of Biomedical Imaging*, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

**Blind Retrospective Motion Correction of MR Images**
University of Tübingen, Germany, May 2015 (phdthesis)

**Independence of cause and mechanism in brain networks**
*DALI workshop on Networks: Processes and Causality*, April 2015 (talk)

**Information-Theoretic Implications of Classical and Quantum Causal Structures **
18th Conference on Quantum Information Processing (QIP), 2015 (talk)

**Assessment of brain tissue damage in the Sub-Acute Stroke Region by Multiparametric Imaging using [89-Zr]-Desferal-EPO-PET/MRI**
World Molecular Imaging Conference, 2015 (talk)

**Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data**
In *Visualization and Processing of Higher Order Descriptors for Multi-Valued Data*, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

**A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

**Early time point in vivo PET/MR is a promising biomarker for determining efficacy of a novel Db(\alphaEGFR)-scTRAIL fusion protein therapy in a colon cancer model**
World Molecular Imaging Conference, 2015 (talk)

**Sequential Image Deconvolution Using Probabilistic Linear Algebra**
Technical University of Munich, Germany, 2015 (mastersthesis)

**Causal Inference in Neuroimaging**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

**The effect of frowning on attention**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

**Justifying Information-Geometric Causal Inference**
In *Measures of Complexity: Festschrift for Alexey Chervonenkis*, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

**The search for single exoplanet transits in the Kepler light curves**
*IAU General Assembly*, 22, pages: 2258352, 2015 (talk)

**Learning Control and Planning from the View of Control Theory and Imitation**
NIPS Workshop "Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (talk)

**Recurrent neural networks from learning attractor dynamics**
NIPS Workshop on RNNaissance: Recurrent Neural Networks, December 2003 (talk)

**Real-Time Face Detection**
Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

Bousquet, O.
**Statistical Learning Theory**
Machine Learning Summer School, August 2003 (talk)

**Remarks on Statistical Learning Theory**
Machine Learning Summer School, August 2003 (talk)

**Ladungsträgerdynamik in optisch angeregten GaAs-Quantendrähten:Relaxation und Transport**
Biologische Kybernetik, Institut für Festkörpertheorie, WWU Münster, June 2003 (diplomathesis)

**Kernel Methods for Classification and Signal Separation**
pages: 226, Biologische Kybernetik, University of Cambridge, Cambridge, April 2003 (phdthesis)

**Rademacher and Gaussian averages in Learning Theory**
Universite de Marne-la-Vallee, March 2003 (talk)

Bousquet, O., Schölkopf, B.
**Statistical Learning Theory**
March 2003 (talk)

**Concentration Inequalities and Data-Dependent Error Bounds**
Uni. Jena, February 2003 (talk)

**Introduction: Robots with Cognition?**
6, pages: 38, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (talk)

**Support Vector Machines**
In *Handbook of Brain Theory and Neural Networks (2nd edition)*, pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)

**Large margin Methods in Label Sequence Learning**
Brown University, Providence, RI, USA, 2003 (mastersthesis)

**Extension of the nu-SVM range for classification**
In *Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190*, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

**m-Alternative Forced Choice—Improving the Efficiency of the
Method of Constant Stimuli**
Biologische Kybernetik, Graduate School for Neural and
Behavioural Sciences, Tübingen, 2003 (diplomathesis)

**An Introduction to Support Vector Machines**
In *Recent Advances and Trends in Nonparametric Statistics
*, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)