45 results
(View BibTeX file of all listed publications)

**Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism**
*53rd Annual Allerton Conference on Communication, Control, and Computing*, September 2015 (talk)

**Kernel methods in medical imaging**
In *Handbook of Biomedical Imaging*, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

**Independence of cause and mechanism in brain networks**
*DALI workshop on Networks: Processes and Causality*, April 2015 (talk)

**Information-Theoretic Implications of Classical and Quantum Causal Structures **
18th Conference on Quantum Information Processing (QIP), 2015 (talk)

**Assessment of brain tissue damage in the Sub-Acute Stroke Region by Multiparametric Imaging using [89-Zr]-Desferal-EPO-PET/MRI**
World Molecular Imaging Conference, 2015 (talk)

**Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data**
In *Visualization and Processing of Higher Order Descriptors for Multi-Valued Data*, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

**Early time point in vivo PET/MR is a promising biomarker for determining efficacy of a novel Db(\alphaEGFR)-scTRAIL fusion protein therapy in a colon cancer model**
World Molecular Imaging Conference, 2015 (talk)

**Justifying Information-Geometric Causal Inference**
In *Measures of Complexity: Festschrift for Alexey Chervonenkis*, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

**The search for single exoplanet transits in the Kepler light curves**
*IAU General Assembly*, 22, pages: 2258352, 2015 (talk)

**Learning Motor Skills: From Algorithms to Robot Experiments**
97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)

**Computational Diffusion MRI and Brain Connectivity**
pages: 255, Mathematics and Visualization, Springer, 2014 (book)

**Unsupervised identification of neural events in local field potentials**
44th Annual Meeting of the Society for Neuroscience (Neuroscience), 2014 (talk)

**Quantifying statistical dependency**
Research Network on Learning Systems Summer School, 2014 (talk)

**Single-Source Domain Adaptation with Target and Conditional Shift**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 427-456, 19, Chapman & Hall/CRC Machine Learning & Pattern Recognition, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), Chapman and Hall/CRC, Boca Raton, USA, 2014 (inbook)

**Higher-Order Tensors in Diffusion Imaging**
In *Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data*, pages: 129-161, Mathematics + Visualization, (Editors: Westin, C.-F., Vilanova, A. and Burgeth, B.), Springer, 2014 (inbook)

**Fuzzy Fibers: Uncertainty in dMRI Tractography**
In *Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization*, pages: 79-92, 8, Mathematics + Visualization, (Editors: Hansen, C. D., Chen, M., Johnson, C. R., Kaufman, A. E. and Hagen, H.), Springer, 2014 (inbook)

**Nonconvex Proximal Splitting with Computational Errors**
In *Regularization, Optimization, Kernels, and Support Vector Machines*, pages: 83-102, 4, (Editors: Suykens, J. A. K., Signoretto, M. and Argyriou, A.), CRC Press, 2014 (inbook)

**Active Learning - Modern Learning Theory**
In *Encyclopedia of Algorithms*, (Editors: Kao, M.-Y.), Springer Berlin Heidelberg, 2014 (incollection)

**Using a population based Gaussian Mixture Model on fused [18]F-FDG PET and DW-MRI images accurately segments the tumor microenvironment into clinically relevant compartments capable of guiding therapy**
European Molecular Imaging Meeting, 2014 (talk)

**Causal Inference from Passive Observations**
24th Summer School University of Jyväskylā, Finland, August, 2014 (talk)

Zhou, D.
**How to learn from very few examples?**
October 2004 (talk)

Zhou, D.
**Discrete vs. Continuous: Two Sides of Machine Learning**
October 2004 (talk)

Zhou, D.
**Discrete vs. Continuous: Two Sides of Machine Learning**
October 2004 (talk)

**Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung**
September 2004 (talk)

**Kernel Methods in Computational Biology**
pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)

**The benefit of liquid Helium cooling for Cryo-Electron Tomography: A quantitative
comparative study**
The thirteenth European Microscopy Congress, August 2004 (talk)

**Analysis of differential gene expression in healthy and osteoarthritic cartilage and isolated chondrocytes by microarray analysis**
In Volume 1: Cellular and Molecular Tools, pages: 109-128, (Editors: Sabatini, M., P. Pastoureau and F. De Ceuninck), Humana Press, July 2004 (inbook)

**Distributed Command Execution**
In *BSD Hacks: 100 industrial-strength tips & tools*, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

Bousquet, O.
**Introduction to Category Theory**
Internal Seminar, January 2004 (talk)

**Local Alignment Kernels for Biological Sequences**
In *Kernel Methods in Computational Biology*, pages: 131-153, MIT Press, Cambridge, MA,, 2004 (inbook)

**Gaussian Processes in Machine Learning**
In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)

**Protein Classification via Kernel Matrix Completion**
In pages: 261-274, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**Introduction to Statistical Learning Theory**
In Lecture Notes in Artificial Intelligence 3176, pages: 169-207, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**A Primer on Kernel Methods**
In *Kernel Methods in Computational Biology*, pages: 35-70, (Editors: B Schölkopf and K Tsuda and JP Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

**Concentration Inequalities**
In Lecture Notes in Artificial Intelligence 3176, pages: 208-240, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

**Kernels for graphs**
In pages: 155-170, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

**A primer on molecular biology**
In pages: 3-34, (Editors: Schoelkopf, B., K. Tsuda and J. P. Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

Bousquet, O.
**Advanced Statistical Learning Theory**
Machine Learning Summer School, 2004 (talk)

**Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond**
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Bousquet, O.
**Transductive Learning: Motivation, Models, Algorithms**
January 2002 (talk)

**Support vector learning**
pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)

**Künstliches Lernen**
In *Komplexe adaptive Systeme, Forum für Interdisziplinäre Forschung*, 15, pages: 93-117, Forum für interdisziplinäre Forschung, (Editors: S Bornholdt and PH Feindt), Röll, Dettelbach, 1996 (inbook)