50 results
(View BibTeX file of all listed publications)

**Elements of Causal Inference - Foundations and Learning Algorithms**
Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)

**New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)**
*Dagstuhl Reports*, 6(11):142-167, 2017 (book)

**Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism**
*53rd Annual Allerton Conference on Communication, Control, and Computing*, September 2015 (talk)

**Independence of cause and mechanism in brain networks**
*DALI workshop on Networks: Processes and Causality*, April 2015 (talk)

**Information-Theoretic Implications of Classical and Quantum Causal Structures **
18th Conference on Quantum Information Processing (QIP), 2015 (talk)

**Assessment of brain tissue damage in the Sub-Acute Stroke Region by Multiparametric Imaging using [89-Zr]-Desferal-EPO-PET/MRI**
World Molecular Imaging Conference, 2015 (talk)

**Early time point in vivo PET/MR is a promising biomarker for determining efficacy of a novel Db(\alphaEGFR)-scTRAIL fusion protein therapy in a colon cancer model**
World Molecular Imaging Conference, 2015 (talk)

**The search for single exoplanet transits in the Kepler light curves**
*IAU General Assembly*, 22, pages: 2258352, 2015 (talk)

**Reaction graph kernels for discovering missing enzymes in the plant secondary metabolism**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**Positional Oligomer Importance Matrices**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**An Automated Combination of Kernels for Predicting Protein Subcellular Localization**
NIPS Workshop on Machine Learning in Computational Biology, December 2007 (talk)

**Challenges in Brain-Computer Interface Development: Induction, Measurement, Decoding, Integration**
Invited keynote talk at the launch of BrainGain, the Dutch BCI research consortium, November 2007 (talk)

**Policy Learning for Robotics**
14th International Conference on Neural Information Processing (ICONIP), November 2007 (talk)

**Hilbert Space Representations of Probability Distributions**
2nd Workshop on Machine Learning and Optimization at the ISM, October 2007 (talk)

**Regression with Intervals**
International Workshop on Data-Mining and Statistical Science (DMSS2007), October 2007, JSAI Incentive Award. Talk was given by Hisashi Kashima. (talk)

**MR-Based PET Attenuation Correction: Method and Validation**
Joint Molecular Imaging Conference, September 2007 (talk)

**Predicting Structured Data**
pages: 360, Advances in neural information processing systems, MIT Press, Cambridge, MA, USA, September 2007 (book)

**Large-Scale Kernel Machines**
pages: 416, Neural Information Processing Series, MIT Press, Cambridge, MA, USA, September 2007 (book)

**Bayesian methods for NMR structure determination**
29th Annual Discussion Meeting: Magnetic Resonance in Biophysical Chemistry, September 2007 (talk)

**Collaborative Filtering via Ensembles of Matrix Factorizations**
KDD Cup and Workshop, August 2007 (talk)

**Thinking Out Loud: Research and Development of Brain Computer Interfaces**
Invited keynote talk at the Max Planck Society‘s PhDNet Workshop., July 2007 (talk)

**Local Learning Algorithms for Transductive Classification, Clustering and Data Projection**
Yahoo Inc., July 2007 (talk)

**Dirichlet Process Mixtures of Factor Analysers**
Fifth Workshop on Bayesian Inference in Stochastic Processes (BSP5), June 2007 (talk)

**New BCI approaches: Selective Attention to Auditory and Tactile Stimulus Streams**
Invited talk at the PASCAL Workshop on Methods of Data Analysis in Computational Neuroscience and Brain Computer Interfaces, June 2007 (talk)

**Towards Motor Skill Learning in Robotics**
Interactive Robot Learning - RSS workshop, June 2007 (talk)

**Transductive Support Vector Machines for Structured Variables**
International Conference on Machine Learning (ICML), June 2007 (talk)

**Impact of target-to-target interval on classification performance in the P300 speller**
Scientific Meeting "Applied Neuroscience for Healthy Brain Function", May 2007 (talk)

Peters, J.
**Benchmarking of Policy Gradient Methods**
ADPRL Workshop, April 2007 (talk)

**New Margin- and Evidence-Based Approaches for EEG Signal Classification**
Invited talk at the FaSor Jahressymposium, February 2007 (talk)

**A Kernel Method for the Two-Sample-Problem**
20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

**Ab-initio gene finding using machine learning**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Reinforcement Learning by Reward-Weighted Regression**
NIPS Workshop: Towards a New Reinforcement Learning? , December 2006 (talk)

**Graph boosting for molecular QSAR analysis**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions**
NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

**Learning Optimal EEG Features Across Time, Frequency and Space**
NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

**Semi-Supervised Learning**
Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

**A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images**
IEEE Medical Imaging Conference, November 2006 (talk)

**Semi-Supervised Support Vector Machines and Application to Spam Filtering**
ECML Discovery Challenge Workshop, September 2006 (talk)

**Semi-Supervised Learning**
pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)

**Inferential Structure Determination: Probabilistic determination and validation of NMR structures**
Gordon Research Conference on Computational Aspects of Biomolecular
NMR, September 2006 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
2nd ISCB Student Council Symposium, August 2006 (talk)

**Inferential structure determination: Overview and new developments**
Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

**MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models**
ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

**Sampling for non-conjugate infinite latent feature models**
(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

**An Inventory of Sequence Polymorphisms For Arabidopsis**
17th International Conference on Arabidopsis Research, April 2006 (talk)

**Machine Learning and Applications in Biology**
6th Course in Bioinformatics for Molecular Biologist, March 2006 (talk)

**Gaussian Processes for Machine Learning**
pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)

**Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond**
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Bousquet, O.
**Transductive Learning: Motivation, Models, Algorithms**
January 2002 (talk)