Header logo is ei


2015


no image
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies

Grimm, Dominik

Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

[BibTex]

2015

[BibTex]


no image
Causal Discovery Beyond Conditional Independences

Sgouritsa, E.

Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

link (url) [BibTex]

link (url) [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

[BibTex]

[BibTex]


no image
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding

Muandet, K.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

[BibTex]

[BibTex]


no image
Machine Learning Approaches to Image Deconvolution

Schuler, C.

University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

[BibTex]

[BibTex]


no image
Blind Retrospective Motion Correction of MR Images

Loktyushin, A.

University of Tübingen, Germany, May 2015 (phdthesis)

[BibTex]

[BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

[BibTex]

[BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Assessment of brain tissue damage in the Sub-Acute Stroke Region by Multiparametric Imaging using [89-Zr]-Desferal-EPO-PET/MRI

Castaneda, S. G., Katiyar, P., Russo, F., Disselhorst, J. A., Calaminus, C., Poli, S., Maurer, A., Ziemann, U., Pichler, B. J.

World Molecular Imaging Conference, 2015 (talk)

[BibTex]

[BibTex]


no image
A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis

Hohmann, M.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
Early time point in vivo PET/MR is a promising biomarker for determining efficacy of a novel Db(\alphaEGFR)-scTRAIL fusion protein therapy in a colon cancer model

Divine, M. R., Harant, M., Katiyar, P., Disselhorst, J. A., Bukala, D., Aidone, S., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B. J.

World Molecular Imaging Conference, 2015 (talk)

[BibTex]

[BibTex]


no image
Sequential Image Deconvolution Using Probabilistic Linear Algebra

Gao, M.

Technical University of Munich, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
Causal Inference in Neuroimaging

Casarsa de Azevedo, L.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
The effect of frowning on attention

Ibarra Chaoul, A.

Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

[BibTex]

[BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

link (url) [BibTex]

link (url) [BibTex]

2008


no image
BCPy2000

Hill, N., Schreiner, T., Puzicha, C., Farquhar, J.

Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

Web [BibTex]

2008

Web [BibTex]


no image
Logistic Regression for Graph Classification

Shervashidze, N., Tsuda, K.

NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (talk)

Abstract
In this paper we deal with graph classification. We propose a new algorithm for performing sparse logistic regression for graphs, which is comparable in accuracy with other methods of graph classification and produces probabilistic output in addition. Sparsity is required for the reason of interpretability, which is often necessary in domains such as bioinformatics or chemoinformatics.

Web [BibTex]

Web [BibTex]


no image
New Projected Quasi-Newton Methods with Applications

Sra, S.

Microsoft Research Tech-talk, December 2008 (talk)

Abstract
Box-constrained convex optimization problems are central to several applications in a variety of fields such as statistics, psychometrics, signal processing, medical imaging, and machine learning. Two fundamental examples are the non-negative least squares (NNLS) problem and the non-negative Kullback-Leibler (NNKL) divergence minimization problem. The non-negativity constraints are usually based on an underlying physical restriction, for e.g., when dealing with applications in astronomy, tomography, statistical estimation, or image restoration, the underlying parameters represent physical quantities such as concentration, weight, intensity, or frequency counts and are therefore only interpretable with non-negative values. Several modern optimization methods can be inefficient for simple problems such as NNLS and NNKL as they are really designed to handle far more general and complex problems. In this work we develop two simple quasi-Newton methods for solving box-constrained (differentiable) convex optimization problems that utilize the well-known BFGS and limited memory BFGS updates. We position our method between projected gradient (Rosen, 1960) and projected Newton (Bertsekas, 1982) methods, and prove its convergence under a simple Armijo step-size rule. We illustrate our method by showing applications to: Image deblurring, Positron Emission Tomography (PET) image reconstruction, and Non-negative Matrix Approximation (NMA). On medium sized data we observe performance competitive to established procedures, while for larger data the results are even better.

PDF [BibTex]

PDF [BibTex]


no image
MR-Based PET Attenuation Correction: Initial Results for Whole Body

Hofmann, M., Steinke, F., Aschoff, P., Lichy, M., Brady, M., Schölkopf, B., Pichler, B.

Medical Imaging Conference, October 2008 (talk)

[BibTex]

[BibTex]


no image
Nonparametric Indepedence Tests: Space Partitioning and Kernel Approaches

Gretton, A., Györfi, L.

19th International Conference on Algorithmic Learning Theory (ALT08), October 2008 (talk)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Data-driven goodness-of-fit tests

Langovoy, M.

2008 Barcelona Conference on Asymptotic Statistics (BAS), September 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning for Motor Primitives

Kober, J.

Biologische Kybernetik, University of Stuttgart, Stuttgart, Germany, August 2008 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Asymmetries of Time Series under Inverting their Direction

Peters, J.

Biologische Kybernetik, University of Heidelberg, August 2008 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
mGene: A Novel Discriminative Gene Finder

Schweikert, G., Zeller, G., Zien, A., Behr, J., Sonnenburg, S., Philips, P., Ong, C., Rätsch, G.

Worm Genomics and Systems Biology meeting, July 2008 (talk)

[BibTex]

[BibTex]


no image
Learning an Interest Operator from Human Eye Movements

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, July 2008 (phdthesis)

[BibTex]

[BibTex]


no image
Discovering Common Sequence Variation in Arabidopsis thaliana

Rätsch, G., Clark, R., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., Warthman, N., Hu, T., Fu, G., Hinds, D., Cheng, H., Frazer, K., Huson, D., Schölkopf, B., Nordborg, M., Ecker, J., Weigel, D., Schneeberger, K., Bohlen, A.

16th Annual International Conference Intelligent Systems for Molecular Biology (ISMB), July 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
CogRob 2008: The 6th International Cognitive Robotics Workshop

Lespérance, Y., Lakemeyer, G., Peters, J., Pirri, F.

Proceedings of the 6th International Cognitive Robotics Workshop (CogRob 2008), pages: 35, Patras University Press, Patras, Greece, 6th International Cognitive Robotics Workshop (CogRob), July 2008 (proceedings)

Web [BibTex]

Web [BibTex]


no image
Coding Theory in Brain-Computer Interfaces

Martens, SMM.

Soria Summerschool on Computational Mathematics "Algebraic Coding Theory" (S3CM), July 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Motor Skill Learning for Cognitive Robotics

Peters, J.

6th International Cognitive Robotics Workshop (CogRob), July 2008 (talk)

Abstract
Autonomous robots that can assist humans in situations of daily life have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. A first step towards this goal is to create robots that can learn tasks triggered by environmental context or higher level instruction. However, learning techniques have yet to live up to this promise as only few methods manage to scale to high-dimensional manipulator or humanoid robots. In this tutorial, we give a general overview on motor skill learning for cognitive robotics using research at ATR, USC, CMU and Max-Planck in order to illustrate the problems in motor skill learning. For doing so, we discuss task-appropriate representations and algorithms for learning robot motor skills. Among the topics are the learning basic movements or motor primitives by imitation and reinforcement learning, learning rhytmic and discrete movements, fast regression methods for learning inverse dynamics and setups for learning task-space policies. Examples on various robots, e.g., SARCOS DB, the SARCOS Master Arm, BDI Little Dog and a Barrett WAM, are shown and include Ball-in-a-Cup, T-Ball, Juggling, Devil-Sticking, Operational Space Control and many others.

Web [BibTex]

Web [BibTex]


no image
Painless Embeddings of Distributions: the Function Space View (Part 1)

Fukumizu, K., Gretton, A., Smola, A.

25th International Conference on Machine Learning (ICML), July 2008 (talk)

Abstract
This tutorial will give an introduction to the recent understanding and methodology of the kernel method: dealing with higher order statistics by embedding painlessly random variables/probability distributions. In the early days of kernel machines research, the "kernel trick" was considered a useful way of constructing nonlinear algorithms from linear ones. More recently, however, it has become clear that a potentially more far reaching use of kernels is as a linear way of dealing with higher order statistics by embedding distributions in a suitable reproducing kernel Hilbert space (RKHS). Notably, unlike the straightforward expansion of higher order moments or conventional characteristic function approach, the use of kernels or RKHS provides a painless, tractable way of embedding distributions. This line of reasoning leads naturally to the questions: what does it mean to embed a distribution in an RKHS? when is this embedding injective (and thus, when do different distributions have unique mappings)? what implications are there for learning algorithms that make use of these embeddings? This tutorial aims at answering these questions. There are a great variety of applications in machine learning and computer science, which require distribution estimation and/or comparison.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement Learning for Robotics

Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL), July 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Multi-Classification by Categorical Features via Clustering

Seldin, Y.

25th International Conference on Machine Learning (ICML), June 2008 (talk)

Abstract
We derive a generalization bound for multi-classification schemes based on grid clustering in categorical parameter product spaces. Grid clustering partitions the parameter space in the form of a Cartesian product of partitions for each of the parameters. The derived bound provides a means to evaluate clustering solutions in terms of the generalization power of a built-on classifier. For classification based on a single feature the bound serves to find a globally optimal classification rule. Comparison of the generalization power of individual features can then be used for feature ranking. Our experiments show that in this role the bound is much more precise than mutual information or normalized correlation indices.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Thin-Plate Splines Between Riemannian Manifolds

Steinke, F., Hein, M., Schölkopf, B.

Workshop on Geometry and Statistics of Shapes, June 2008 (talk)

Abstract
With the help of differential geometry we describe a framework to define a thin-plate spline like energy for maps between arbitrary Riemannian manifolds. The so-called Eells energy only depends on the intrinsic geometry of the input and output manifold, but not on their respective representation. The energy can then be used for regression between manifolds, we present results for cases where the outputs are rotations, sets of angles, or points on 3D surfaces. In the future we plan to also target regression where the output is an element of "shape space", understood as a Riemannian manifold. One could also further explore the meaning of the Eells energy when applied to diffeomorphisms between shapes, especially with regard to its potential use as a distance measure between shapes that does not depend on the embedding or the parametrisation of the shapes.

Web [BibTex]

Web [BibTex]


no image
Machine Learning for Robotics: Learning Methods for Robot Motor Skills

Peters, J.

pages: 107 , (Editors: J Peters), VDM-Verlag, Saarbrücken, Germany, May 2008 (book)

Abstract
Autonomous robots have been a vision of robotics, artificial intelligence, and cognitive sciences. An important step towards this goal is to create robots that can learn to accomplish amultitude of different tasks triggered by environmental context and higher-level instruction. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s showed that handcrafted approaches do not suffice and that machine learning is needed. However, off the shelf learning techniques often do not scale into real-time or to the high-dimensional domains of manipulator and humanoid robotics. In this book, we investigate the foundations for a general approach to motor skilllearning that employs domain-specific machine learning methods. A theoretically well-founded general approach to representing the required control structures for task representation and executionis presented along with novel learning algorithms that can be applied in this setting. The resulting framework is shown to work well both in simulation and on real robots.

Web [BibTex]

Web [BibTex]


no image
Learning resolved velocity control

Peters, J.

2008 IEEE International Conference on Robotics and Automation (ICRA), May 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Causal inference from statistical data

Sun, X.

Biologische Kybernetik, Technische Hochschule Karlsruhe, Karlsruhe, Germany, April 2008 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in Primary Visual Cortex

Berens, P.

Biologische Kybernetik, Eberhard Karls Universität Tübingen, Tübingen, Germany, April 2008 (diplomathesis)

[BibTex]

[BibTex]


no image
Bayesian methods for protein structure determination

Habeck, M.

Machine Learning in Structural Bioinformatics, April 2008 (talk)

Web [BibTex]

Web [BibTex]


no image
Development and Application of a Python Scripting Framework for BCI2000

Schreiner, T.

Biologische Kybernetik, Eberhard-Karls-Universität Tübingen, Tübingen, Germany, January 2008 (diplomathesis)

[BibTex]

[BibTex]


no image
Efficient and Invariant Regularisation with Application to Computer Graphics

Walder, CJ.

Biologische Kybernetik, University of Queensland, Brisbane, Australia, January 2008 (phdthesis)

Abstract
This thesis develops the theory and practise of reproducing kernel methods. Many functional inverse problems which arise in, for example, machine learning and computer graphics, have been treated with practical success using methods based on a reproducing kernel Hilbert space perspective. This perspective is often theoretically convenient, in that many functional analysis problems reduce to linear algebra problems in these spaces. Somewhat more complex is the case of conditionally positive definite kernels, and we provide an introduction to both cases, deriving in a particularly elementary manner some key results for the conditionally positive definite case. A common complaint of the practitioner is the long running time of these kernel based algorithms. We provide novel ways of alleviating these problems by essentially using a non-standard function basis which yields computational advantages. That said, by doing so we must also forego the aforementioned theoretical conveniences, and hence need some additional analysis which we provide in order to make the approach practicable. We demonstrate that the method leads to state of the art performance on the problem of surface reconstruction from points. We also provide some analysis of kernels invariant to transformations such as translation and dilation, and show that this indicates the value of learning algorithms which use conditionally positive definite kernels. Correspondingly, we provide a few approaches for making such algorithms practicable. We do this either by modifying the kernel, or directly solving problems with conditionally positive definite kernels, which had previously only been solved with positive definite kernels. We demonstrate the advantage of this approach, in particular by attaining state of the art classification performance with only one free parameter.

PDF [BibTex]

PDF [BibTex]


no image
Discrete vs. Continuous: Two Sides of Machine Learning

Zhou, D.

October 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data. This talk is mainly based on the followiing contribution: (1) D. Zhou and B. Sch{\"o}lkopf: Transductive Inference with Graphs, MPI Technical report, August, 2004; (2) D. Zhou, B. Sch{\"o}lkopf and T. Hofmann. Semi-supervised Learning on Directed Graphs. NIPS 2004; (3) D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Sch{\"o}lkopf. Learning with Local and Global Consistency. NIPS 2003.

PDF [BibTex]


no image
Independent component analysis and beyond

Harmeling, S.

Biologische Kybernetik, Universität Potsdam, Potsdam, October 2004 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Eichhorn, J.

September 2004 (talk)

Abstract
Invited talk at the workshop "Numerical, Statistical and Discrete Methods in Image Processing" at the TU M{\"u}nchen (in GERMAN)

PDF [BibTex]


no image
Advanced Lectures on Machine Learning

Bousquet, O., von Luxburg, U., Rätsch, G.

ML Summer Schools 2003, LNAI 3176, pages: 240, Springer, Berlin, Germany, ML Summer Schools, September 2004 (proceedings)

Abstract
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in T{\"u}bingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

Web [BibTex]

Web [BibTex]


no image
Pattern Recognition: 26th DAGM Symposium, LNCS, Vol. 3175

Rasmussen, C., Bülthoff, H., Giese, M., Schölkopf, B.

Proceedings of the 26th Pattern Recognition Symposium (DAGM‘04), pages: 581, Springer, Berlin, Germany, 26th Pattern Recognition Symposium, August 2004 (proceedings)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Kernel Methods in Computational Biology

Schölkopf, B., Tsuda, K., Vert, J.

pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)

Abstract
Modern machine learning techniques are proving to be extremely valuable for the analysis of data in computational biology problems. One branch of machine learning, kernel methods, lends itself particularly well to the difficult aspects of biological data, which include high dimensionality (as in microarray measurements), representation as discrete and structured data (as in DNA or amino acid sequences), and the need to combine heterogeneous sources of information. This book provides a detailed overview of current research in kernel methods and their applications to computational biology. Following three introductory chapters—an introduction to molecular and computational biology, a short review of kernel methods that focuses on intuitive concepts rather than technical details, and a detailed survey of recent applications of kernel methods in computational biology—the book is divided into three sections that reflect three general trends in current research. The first part presents different ideas for the design of kernel functions specifically adapted to various biological data; the second part covers different approaches to learning from heterogeneous data; and the third part offers examples of successful applications of support vector machine methods.

Web [BibTex]

Web [BibTex]


no image
The benefit of liquid Helium cooling for Cryo-Electron Tomography: A quantitative comparative study

Schweikert, G., Luecken, U., Pfeifer, G., Baumeister, W., Plitzko, J.

The thirteenth European Microscopy Congress, August 2004 (talk)

[BibTex]

[BibTex]


no image
Riemannian Geometry on Graphs and its Application to Ranking and Classification

Zhou, D.

June 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data.

PDF [BibTex]