Header logo is ei


2019


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster)

link (url) [BibTex]

2019

link (url) [BibTex]


no image
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks

von Kügelgen, J., Rubenstein, P. K., Schölkopf, B., Weller, A.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted

link (url) [BibTex]

link (url) [BibTex]


no image
Perception of temporal dependencies in autoregressive motion

Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

[BibTex]


no image
Phenomenal Causality and Sensory Realism

Bruijns, S. A., Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

[BibTex]

[BibTex]

2016


no image
Autofocusing-based correction of B0 fluctuation-induced ghosting

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2016 (poster)

link (url) [BibTex]

2016

link (url) [BibTex]


no image
Novel Random Forest based framework enables the segmentation of cerebral ischemic regions using multiparametric MRI

Katiyar, P., Castaneda, S., Patzwaldt, K., Russo, F., Poli, S., Ziemann, U., Disselhorst, J. A., Pichler, B. J.

European Molecular Imaging Meeting, 2016 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
PGO wave-triggered functional MRI: mapping the networks underlying synaptic consolidation

Logothetis, N. K., Murayama, Y., Ramirez-Villegas, J. F., Besserve, M., Evrard, H.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

[BibTex]

[BibTex]


no image
Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke

Castaneda, S., Katiyar, P., Russo, F., Calaminus, C., Disselhorst, J. A., Ziemann, U., Kohlhofer, U., Quintanilla-Martinez, L., Poli, S., Pichler, B. J.

World Molecular Imaging Conference, 2016 (talk)

link (url) [BibTex]

link (url) [BibTex]


no image
Multiparametric Imaging of Ischemic Stroke using [89Zr]-Desferal-EPO-PET/MRI in combination with Gaussian Mixture Modeling enables unsupervised lesions identification

Castaneda, S., Katiyar, P., Russo, F., Maurer, A., Patzwaldt, K., Poli, S., Calaminus, C., Disselhorst, J. A., Ziemann, U., Pichler, B. J.

European Molecular Imaging Meeting, 2016 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
Statistical source separation of rhythmic LFP patterns during sharp wave ripples in the macaque hippocampus

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

[BibTex]

[BibTex]


no image
Multi-view learning on multiparametric PET/MRI quantifies intratumoral heterogeneity and determines therapy efficacy

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B. J., Disselhorst, J. A.

World Molecular Imaging Conference, 2016 (talk)

link (url) [BibTex]

link (url) [BibTex]


no image
Hippocampal neural events predict ongoing brain-wide BOLD activity

Besserve, M., Logothetis, N. K.

47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)

[BibTex]

[BibTex]


no image
Diversity of sharp wave-ripples in the CA1 of the macaque hippocampus and their brain wide signatures

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

45th Annual Meeting of the Society for Neuroscience (Neuroscience 2015), October 2015 (poster)

link (url) [BibTex]

link (url) [BibTex]


no image
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism

Besserve, M.

53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)

[BibTex]

[BibTex]


no image
Retrospective rigid motion correction of undersampled MRI data

Loktyushin, A., Babayeva, M., Gallichan, D., Krueger, G., Scheffler, K., Kober, T.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

[BibTex]

[BibTex]


no image
Improving Quantitative Susceptibility and R2* Mapping by Applying Retrospective Motion Correction

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J. R.

23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, ISMRM, June 2015 (poster)

[BibTex]

[BibTex]


no image
Independence of cause and mechanism in brain networks

Besserve, M.

DALI workshop on Networks: Processes and Causality, April 2015 (talk)

[BibTex]

[BibTex]


no image
Increasing the sensitivity of Kepler to Earth-like exoplanets

Foreman-Mackey, D., Hogg, D., Schölkopf, B., Wang, D.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 105.01D, 2015 (poster)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Information-Theoretic Implications of Classical and Quantum Causal Structures

Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.

18th Conference on Quantum Information Processing (QIP), 2015 (talk)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Calibrating the pixel-level Kepler imaging data with a causal data-driven model

Wang, D., Foreman-Mackey, D., Hogg, D., Schölkopf, B.

Workshop: 225th American Astronomical Society Meeting 2015 , pages: 258.08, 2015 (poster)

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Assessment of brain tissue damage in the Sub-Acute Stroke Region by Multiparametric Imaging using [89-Zr]-Desferal-EPO-PET/MRI

Castaneda, S. G., Katiyar, P., Russo, F., Disselhorst, J. A., Calaminus, C., Poli, S., Maurer, A., Ziemann, U., Pichler, B. J.

World Molecular Imaging Conference, 2015 (talk)

[BibTex]

[BibTex]


no image
Early time point in vivo PET/MR is a promising biomarker for determining efficacy of a novel Db(\alphaEGFR)-scTRAIL fusion protein therapy in a colon cancer model

Divine, M. R., Harant, M., Katiyar, P., Disselhorst, J. A., Bukala, D., Aidone, S., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B. J.

World Molecular Imaging Conference, 2015 (talk)

[BibTex]

[BibTex]


no image
Assessment of tumor heterogeneity using unsupervised graph based clustering of multi-modality imaging data

Katiyar, P., Divine, M. R., Pichler, B. J., Disselhorst, J. A.

European Molecular Imaging Meeting, 2015 (poster)

[BibTex]

[BibTex]


no image
Disparity estimation from a generative light field model

Köhler, R., Schölkopf, B., Hirsch, M.

IEEE International Conference on Computer Vision (ICCV 2015), Workshop on Inverse Rendering, 2015, Note: This work has been presented as a poster and is not included in the workshop proceedings. (poster)

[BibTex]

[BibTex]


no image
The search for single exoplanet transits in the Kepler light curves

Foreman-Mackey, D., Hogg, D. W., Schölkopf, B.

IAU General Assembly, 22, pages: 2258352, 2015 (talk)

link (url) [BibTex]

link (url) [BibTex]

2013


no image
Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience}, year = {2013}, month = {7}, volume = {14}, number = {Supplement 1}, pages = {A1}, (talk)

Web [BibTex]

2013

Web [BibTex]


no image
Coupling between spiking activity and beta band spatio-temporal patterns in the macaque PFC

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

43rd Annual Meeting of the Society for Neuroscience (Neuroscience), 2013 (poster)

[BibTex]

[BibTex]


no image
Gaussian Process Vine Copulas for Multivariate Dependence

Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.

International Conference on Machine Learning (ICML), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K., Balduzzi, D., Schölkopf, B.

30th International Conference on Machine Learning (ICML2013), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Analyzing locking of spikes to spatio-temporal patterns in the macaque prefrontal cortex

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

Bernstein Conference, 2013 (poster)

DOI [BibTex]

DOI [BibTex]


no image
One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

PDF [BibTex]

PDF [BibTex]


no image
Characterization of different types of sharp-wave ripple signatures in the CA1 of the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

4th German Neurophysiology PhD Meeting Networks, 2013 (poster)

Web [BibTex]

Web [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K.

30th International Conference on Machine Learning (ICML2013), 2013 (talk)

PDF [BibTex]

PDF [BibTex]


no image
Discrete vs. Continuous: Two Sides of Machine Learning

Zhou, D.

October 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data. This talk is mainly based on the followiing contribution: (1) D. Zhou and B. Sch{\"o}lkopf: Transductive Inference with Graphs, MPI Technical report, August, 2004; (2) D. Zhou, B. Sch{\"o}lkopf and T. Hofmann. Semi-supervised Learning on Directed Graphs. NIPS 2004; (3) D. Zhou, O. Bousquet, T.N. Lal, J. Weston and B. Sch{\"o}lkopf. Learning with Local and Global Consistency. NIPS 2003.

PDF [BibTex]


no image
S-cones contribute to flicker brightness in human vision

Wehrhahn, C., Hill, NJ., Dillenburger, B.

34(174.12), 34th Annual Meeting of the Society for Neuroscience (Neuroscience), October 2004 (poster)

Abstract
In the retina of primates three cone types sensitive to short, middle and long wavelengths of light convert photons into electrical signals. Many investigators have presented evidence that, in color normal observers, the signals of cones sensitive to short wavelengths of light (S-cones) do not contribute to the perception of brightness of a colored surface when this is alternated with an achromatic reference (flicker brightness). Other studies indicate that humans do use S-cone signals when performing this task. Common to all these studies is the small number of observers, whose performance data are reported. Considerable variability in the occurrence of cone types across observers has been found, but, to our knowledge, no cone counts exist from larger populations of humans. We reinvestigated how much the S-cones contribute to flicker brightness. 76 color normal observers were tested in a simple psychophysical procedure neutral to the cone type occurence (Teufel & Wehrhahn (2000), JOSA A 17: 994 - 1006). The data show that, in the majority of our observers, S-cones provide input with a negative sign - relative to L- and M-cone contribution - in the task in question. There is indeed considerable between-subject variability such that for 20 out of 76 observers the magnitude of this input does not differ significantly from 0. Finally, we argue that the sign of S-cone contribution to flicker brightness perception by an observer cannot be used to infer the relative sign their contributions to the neuronal signals carrying the information leading to the perception of flicker brightness. We conclude that studies which use only a small number of observers may easily fail to find significant evidence for the small but significant population tendency for the S-cones to contribute to flicker brightness. Our results confirm all earlier results and reconcile their contradictory interpretations.

Web [BibTex]

Web [BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

AAAI Fall Symposium on Real-Life Reinforcement Learning 2004, 2004, pages: 1, October 2004 (poster)

Web [BibTex]

Web [BibTex]


no image
Pattern detection methods and systems and face detection methods and systems

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 6804391, October 2004 (patent)

[BibTex]

[BibTex]


no image
Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Eichhorn, J.

September 2004 (talk)

Abstract
Invited talk at the workshop "Numerical, Statistical and Discrete Methods in Image Processing" at the TU M{\"u}nchen (in GERMAN)

PDF [BibTex]


no image
Kernel Methods in Computational Biology

Schölkopf, B., Tsuda, K., Vert, J.

pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)

Abstract
Modern machine learning techniques are proving to be extremely valuable for the analysis of data in computational biology problems. One branch of machine learning, kernel methods, lends itself particularly well to the difficult aspects of biological data, which include high dimensionality (as in microarray measurements), representation as discrete and structured data (as in DNA or amino acid sequences), and the need to combine heterogeneous sources of information. This book provides a detailed overview of current research in kernel methods and their applications to computational biology. Following three introductory chapters—an introduction to molecular and computational biology, a short review of kernel methods that focuses on intuitive concepts rather than technical details, and a detailed survey of recent applications of kernel methods in computational biology—the book is divided into three sections that reflect three general trends in current research. The first part presents different ideas for the design of kernel functions specifically adapted to various biological data; the second part covers different approaches to learning from heterogeneous data; and the third part offers examples of successful applications of support vector machine methods.

Web [BibTex]

Web [BibTex]


no image
The benefit of liquid Helium cooling for Cryo-Electron Tomography: A quantitative comparative study

Schweikert, G., Luecken, U., Pfeifer, G., Baumeister, W., Plitzko, J.

The thirteenth European Microscopy Congress, August 2004 (talk)

[BibTex]

[BibTex]


no image
Riemannian Geometry on Graphs and its Application to Ranking and Classification

Zhou, D.

June 2004 (talk)

Abstract
We consider the problem of transductive inference. In many real-world problems, unlabeled data is far easier to obtain than labeled data. Hence transductive inference is very significant in many practical problems. According to Vapnik's point of view, one should predict the function value only on the given points directly rather than a function defined on the whole space, the latter being a more complicated problem. Inspired by this idea, we develop discrete calculus on finite discrete spaces, and then build discrete regularization. A family of transductive algorithms is naturally derived from this regularization framework. We validate the algorithms on both synthetic and real-world data from text/web categorization to bioinformatics problems. A significant by-product of this work is a powerful way of ranking data based on examples including images, documents, proteins and many other kinds of data.

PDF [BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

11th Joint Symposium on Neural Computation (JSNC 2004), 11, pages: 1, May 2004 (poster)

Abstract
One of the major challenges in action generation for robotics and in the understanding of human motor control is to learn the "building blocks of move- ment generation," or more precisely, motor primitives. Recently, Ijspeert et al. [1, 2] suggested a novel framework how to use nonlinear dynamical systems as motor primitives. While a lot of progress has been made in teaching these mo- tor primitives using supervised or imitation learning, the self-improvement by interaction of the system with the environment remains a challenging problem. In this poster, we evaluate different reinforcement learning approaches can be used in order to improve the performance of motor primitives. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and line out how these lead to a novel algorithm which is based on natural policy gradients [3]. We compare this algorithm to previous reinforcement learning algorithms in the context of dynamic motor primitive learning, and show that it outperforms these by at least an order of magnitude. We demonstrate the efficiency of the resulting reinforcement learning method for creating complex behaviors for automous robotics. The studied behaviors will include both discrete, finite tasks such as baseball swings, as well as complex rhythmic patterns as they occur in biped locomotion.

Web [BibTex]

Web [BibTex]