Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.
Convolutional neural networks: A magic bullet for gravitational-wave detection?
Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)
Babbar, R., Schölkopf, B.
Data scarcity, robustness and extreme multi-label classification
Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)
Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T
Magnetic Resonance in Medicine, 2019, (Early View) (article)
Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.
Multidimensional Contrast Limited Adaptive Histogram Equalization
IEEE Access, 7, pages: 165437-165447, 2019 (article)
Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.
Enhancing Human Learning via Spaced Repetition Optimization
Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)
Büchler, D., Calandra, R., Peters, J.
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots
2019 (article) Submitted
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.
Inferring causation from time series with perspectives in Earth system sciences
Nature Communications, 2019 (article) In revision
Gomez-Gonzalez, S., Nemmour, Y., Schölkopf, B., Peters, J.
Reliable Real-Time Ball Tracking for Robot Table Tennis
Robotics, 8(4):90, 2019 (article)
Koc, O., Maeda, G., Peters, J.
Optimizing the Execution of Dynamic Robot Movements With Learning Control
IEEE Transactions on Robotics, pages: 1-16, 2019 (article)
Koc, O., Peters, J.
Learning to Serve: An Experimental Study for a New Learning From Demonstrations Framework
IEEE Robotics and Automation Letters, 4(2):1784-1791, 2019 (article)
Klus, S., Schuster, I., Muandet, K.
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)
Abdolmaleki, A., Lau, N., Reis, L., Peters, J., Neumann, G.
Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller
Journal of Intelligent & Robotic Systems, 83(3-4):393-408, (Editors: Luis Almeida, Lino Marques ), September 2016, Special Issue: Autonomous Robot Systems (article)
Maeda, G., Ewerton, M., Koert, D., Peters, J.
Acquiring and Generalizing the Embodiment Mapping from Human Observations to Robot Skills
IEEE Robotics and Automation Letters, 1(2):784-791, July 2016 (article)
Zhang, K., Wang, Z., Zhang, J., Schölkopf, B.
On estimation of functional causal models: General results and application to post-nonlinear causal model
ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 13, January 2016 (article)
Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.
Gaussian Process-Based Predictive Control for Periodic Error Correction
IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)
Townsend, J., Koep, N., Weichwald, S.
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation
Journal of Machine Learning Research, 17(137):1-5, 2016 (article)
Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B.
A Causal, Data-driven Approach to Modeling the Kepler Data
Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)
Daniel, C., van Hoof, H., Peters, J., Neumann, G.
Probabilistic Inference for Determining Options in Reinforcement Learning
Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)
Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.
Influence of initial fixation position in scene viewing
Vision Research, 129, pages: 33-49, 2016 (article)
Wallis, T. S. A., Bethge, M., Wichmann, F. A.
Testing models of peripheral encoding using metamerism in an oddity paradigm
Journal of Vision, 16(2), 2016 (article)
Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.
Modeling Confounding by Half-Sibling Regression
Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)
Klenske, E. D., Hennig, P.
Dual Control for Approximate Bayesian Reinforcement Learning
Journal of Machine Learning Research, 17(127):1-30, 2016 (article)
Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes
Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)
Seith, F., Gatidis, S., Schmidt, H., Bezrukov, I., la Fougère, C., Nikolaou, K., Pfannenberg, C., Schwenzer, N.
Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance–and Computed Tomography–Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients
Investigative Radiology, 51(1):66-71, 2016 (article)
Gomez Rodriguez, M., Song, L., Daneshmand, H., Schölkopf, B.
Estimating Diffusion Networks: Recovery Conditions, Sample Complexity and Soft-thresholding Algorithm
Journal of Machine Learning Research, 17(90):1-29, 2016 (article)
Castaneda, S., Katiyar, P., Russo, F., Calaminus, C., Disselhorst, J. A., Ziemann, U., Kohlhofer, U., Quintanilla-Martinez, L., Poli, S., Pichler, B. J.
Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke
World Molecular Imaging Conference, 2016 (talk)
Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data
Vision Research, 122, pages: 105-123, 2016 (article)
Grosse-Wentrup, M., Janzing, D., Siegel, M., Schölkopf, B.
Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach
NeuroImage, 125, pages: 825-833, 2016 (article)
Daniel, C., Neumann, G., Kroemer, O., Peters, J.
Hierarchical Relative Entropy Policy Search
Journal of Machine Learning Research, 17(93):1-50, 2016 (article)
Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B.
Kernel Mean Shrinkage Estimators
Journal of Machine Learning Research, 17(48):1-41, 2016 (article)
Schuler, C. J., Hirsch, M., Harmeling, S., Schölkopf, B.
Learning to Deblur
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439-1451, IEEE, 2016 (article)
Jayaram, V., Alamgir, M., Altun, Y., Schölkopf, B., Grosse-Wentrup, M.
Transfer Learning in Brain-Computer Interfaces
IEEE Computational Intelligence Magazine, 11(1):20-31, 2016 (article)
Weichwald, S., Grosse-Wentrup, M., Gretton, A.
MERLiN: Mixture Effect Recovery in Linear Networks
IEEE Journal of Selected Topics in Signal Processing, 10(7):1254-1266, 2016 (article)
Peters, J., Bühlmann, P., Meinshausen, N.
Causal inference using invariant prediction: identification and confidence intervals
Journal of the Royal Statistical Society, Series B (Statistical Methodology), 78(5):947-1012, 2016, (with discussion) (article)
Spirtes, P., Zhang, K.
Causal discovery and inference: concepts and recent methodological advances
Applied Informatics, 3(3):1-28, 2016 (article)
Fomina, T., Lohmann, G., Erb, M., Ethofer, T., Schölkopf, B., Grosse-Wentrup, M.
Self-regulation of brain rhythms in the precuneus: a novel BCI paradigm for patients with ALS
Journal of Neural Engineering, 13(6):066021, 2016 (article)
Gomez-Rodriguez, M., Song, L., Du, N., Zha, H., Schölkopf, B.
Influence Estimation and Maximization in Continuous-Time Diffusion Networks
ACM Transactions on Information Systems, 34(2):9:1-9:33, 2016 (article)
Stimper, V.
Zwischen Harmonie und Chaos - ein verallgemeinertes Modell des Doppelpendels
Junge Wissenschaft, (109), 2016 (article)
Foreman-Mackey, D., Morton, T. D., Hogg, D. W., Agol, E., Schölkopf, B.
The population of long-period transiting exoplanets
The Astronomical Journal, 152(6):206, 2016 (article)
Jäkel, F., Singh, M., Wichmann, F. A., Herzog, M. H.
An overview of quantitative approaches in Gestalt perception
Vision Research, 126, pages: 3-8, 2016 (article)
Huang, H., Peloso, G. M., Howrigan, D., Rakitsch, B., Simon-Gabriel, C. J., Goldstein, J. I., Daly, M. J., Borgwardt, K., Neale, B. M.
Bootstrat: Population Informed Bootstrapping for Rare Variant Tests
bioRxiv, 2016, preprint (article)
Rueckert, E., Camernik, J., Peters, J., Babic, J.
Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control
Nature PG: Scientific Reports, 6(Article number: 28455), 2016 (article)
Mooij, J., Peters, J., Janzing, D., Zscheischler, J., Schölkopf, B.
Distinguishing cause from effect using observational data: methods and benchmarks
Journal of Machine Learning Research, 17(32):1-102, 2016 (article)
Babbar, R., Partalas, I., Gaussier, E., Amini, M., Amblard, C.
Learning Taxonomy Adaptation in Large-scale Classification
Journal of Machine Learning Research, 17(98):1-37, 2016 (article)
Janzing, D., Chaves, R., Schölkopf, B.
Algorithmic independence of initial condition and dynamical law in thermodynamics and causal inference
New Journal of Phyiscs, 18(9):093052, 2016 (article)
Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B. J., Disselhorst, J. A.
Multi-view learning on multiparametric PET/MRI quantifies intratumoral heterogeneity and determines therapy efficacy
World Molecular Imaging Conference, 2016 (talk)
Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., Obermayer, K.
BOiS—Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors
Frontiers in Psychology, 2016 (article)
Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.
Preface to the ACM TIST Special Issue on Causal Discovery and Inference
ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 17, 2016 (article)
Rueckert, E., Kappel, D., Tanneberg, D., Pecevski, D., Peters, J.
Recurrent Spiking Networks Solve Planning Tasks
Nature PG: Scientific Reports, 6(Article number: 21142), 2016 (article)
Genewein, T, Braun, DA
Bio-inspired feedback-circuit implementation of discrete, free energy optimizing, winner-take-all computations
Biological Cybernetics, 110(2):135–150, June 2016 (article)