Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.
Convolutional neural networks: A magic bullet for gravitational-wave detection?
Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)
Babbar, R., Schölkopf, B.
Data scarcity, robustness and extreme multi-label classification
Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)
Rojas-Carulla, M.
Learning Transferable Representations
University of Cambridge, UK, 2019 (phdthesis)
Gu, S.
Sample-efficient deep reinforcement learning for continuous control
University of Cambridge, UK, 2019 (phdthesis)
Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T
Magnetic Resonance in Medicine, 2019, (Early View) (article)
Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.
Multidimensional Contrast Limited Adaptive Histogram Equalization
IEEE Access, 7, pages: 165437-165447, 2019 (article)
Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.
Enhancing Human Learning via Spaced Repetition Optimization
Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)
Ścibior*, A.
Formally justified and modular Bayesian inference for probabilistic programs
University of Cambridge, UK, 2019 (phdthesis)
Xu, J.
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing
Technical University of Munich, Germany, 2019 (mastersthesis)
Büchler, D., Calandra, R., Peters, J.
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots
2019 (article) Submitted
Weichwald, S.
Pragmatism and Variable Transformations in Causal Modelling
ETH Zurich, 2019 (phdthesis)
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.
Inferring causation from time series with perspectives in Earth system sciences
Nature Communications, 2019 (article) In revision
Katiyar, P.
Quantification of tumor heterogeneity using PET/MRI and machine learning
Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)
Kübler, J. M., Muandet, K., Schölkopf, B.
Quantum mean embedding of probability distributions
Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)
Gomez-Gonzalez, S., Nemmour, Y., Schölkopf, B., Peters, J.
Reliable Real-Time Ball Tracking for Robot Table Tennis
Robotics, 8(4):90, 2019 (article)
Bauer, M.
Advances in Probabilistic Modelling: Sparse Gaussian Processes, Autoencoders, and Few-shot Learning
University of Cambridge, UK, 2019 (phdthesis)
Koc, O., Maeda, G., Peters, J.
Optimizing the Execution of Dynamic Robot Movements With Learning Control
IEEE Transactions on Robotics, pages: 1-16, 2019 (article)
Koc, O., Peters, J.
Learning to Serve: An Experimental Study for a New Learning From Demonstrations Framework
IEEE Robotics and Automation Letters, 4(2):1784-1791, 2019 (article)
Klus, S., Schuster, I., Muandet, K.
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)
Grimm, Dominik
easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies
Eberhard Karls Universität Tübingen, November 2015 (phdthesis)
Sippel, S., Zscheischler, J., Heimann, M., Otto, F. E. L., Peters, J., Mahecha, M. D.
Quantifying changes in climate variability and extremes: Pitfalls and their overcoming
Geophysical Research Letters, 42(22):9990-9998, November 2015 (article)
Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.
Diversity of sharp wave-ripple LFP signatures reveals differentiated brain-wide dynamical events
Proceedings of the National Academy of Sciences U.S.A, 112(46):E6379-E6387, November 2015 (article)
Sgouritsa, E.
Causal Discovery Beyond Conditional Independences
Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)
Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.
Noise masking of White’s illusion exposes the weakness of current spatial filtering models of lightness perception
Journal of Vision, 15(14):1-17, October 2015 (article)
Besserve, M.
Causal Inference for Empirical Time Series Based on the Postulate of Independence of Cause and Mechanism
53rd Annual Allerton Conference on Communication, Control, and Computing, September 2015 (talk)
Muandet, K.
From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)
Schuler, C.
Machine Learning Approaches to Image Deconvolution
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)
Besserve, M., Lowe, S. C., Logothetis, N. K., Schölkopf, B., Panzeri, S.
Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer
PLOS Biology, 13(9):e1002257, September 2015 (article)
Janzing, D., Schölkopf, B.
Semi-Supervised Interpolation in an Anticausal Learning Scenario
Journal of Machine Learning Research, 16, pages: 1923-1948, September 2015 (article)
Betz, T., Shapley, R. M., Wichmann, F. A., Maertens, M.
Testing the role of luminance edges in White’s illusion with contour adaptation
Journal of Vision, 15(11):1-16, August 2015 (article)
Loktyushin, A.
Blind Retrospective Motion Correction of MR Images
University of Tübingen, Germany, May 2015 (phdthesis)
Besserve, M.
Independence of cause and mechanism in brain networks
DALI workshop on Networks: Processes and Causality, April 2015 (talk)
Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.
Blind multirigid retrospective motion correction of MR images
Magnetic Resonance in Medicine, 73(4):1457-1468, April 2015 (article)
Ried, K., Agnew, M., Vermeyden, L., Janzing, D., Spekkens, R. W., Resch, K. J.
A quantum advantage for inferring causal structure
Nature Physics, 11(5):414-420, March 2015 (article)
Sra, S.
Positive definite matrices and the S-divergence
Proceedings of the American Mathematical Society, 2015, Published electronically: October 22, 2015 (article)
Peters, J., Bühlmann, P.
Structural Intervention Distance (SID) for Evaluating Causal Graphs
Neural Computation , 27(3):771-799, 2015 (article)
Zhang, J., Zhang, K.
Likelihood and Consilience: On Forster’s Counterexamples to the Likelihood Theory of Evidence
Philosophy of Science, Supplementary Volume 2015, 82(5):930-940, 2015 (article)
Peters, J.
On the Intersection Property of Conditional Independence and its Application to Causal Discovery
Journal of Causal Inference, 3(1):97-108, 2015 (article)
Chaves, R., Majenz, C., Luft, L., Maciel, T., Janzing, D., Schölkopf, B., Gross, D.
Information-Theoretic Implications of Classical and Quantum Causal Structures
18th Conference on Quantum Information Processing (QIP), 2015 (talk)
Küffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., Li, G., Fang, L., Mackey, L., Hardiman, O., Cudkowicz, M., Sherman, A., Ertaylan, G., Grosse-Wentrup, M., Hothorn, T., van Ligtenberg, J., Macke, J., Meyer, T., Schölkopf, B., Tran, L., Vaughan, R., Stolovitzky, G., Leitner, M.
Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression
Nature Biotechnology, 33, pages: 51-57, 2015 (article)
Hennig, P.
Probabilistic Interpretation of Linear Solvers
SIAM Journal on Optimization, 25(1):234-260, 2015 (article)
Mariti, C., Muscolo, G., Peters, J., Puig, D., Recchiuto, C., Sighieri, C., Solanas, A., von Stryk, O.
Developing biorobotics for veterinary research into cat movements
Journal of Veterinary Behavior: Clinical Applications and Research, 10(3):248-254, 2015 (article)
Engbert, R., Trukenbrod, H., Barthelmé, S., Wichmann, F.
Spatial statistics and attentional dynamics in scene viewing
Journal of Vision, 15(1):1-17, 2015 (article)
Lopez-Paz, D., Muandet, K., Recht, B.
The Randomized Causation Coefficient
Journal of Machine Learning, 16, pages: 2901-2907, 2015 (article)
Kopp, M., Harmeling, S., Schütz, G., Schölkopf, B., Fähnle, M.
Towards denoising XMCD movies of fast magnetization dynamics using extended Kalman filter
Ultramicroscopy, 148, pages: 115-122, 2015 (article)
Weichwald, S., Meyer, T., Özdenizci, O., Schölkopf, B., Ball, T., Grosse-Wentrup, M.
Causal interpretation rules for encoding and decoding models in neuroimaging
NeuroImage, 110, pages: 48–59, 2015 (article)
Schölkopf, B., Muandet, K., Fukumizu, K., Harmeling, S., Peters, J.
Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations
Statistics and Computing , 25(4):755-766, 2015 (article)
Schölkopf, B.
Artificial intelligence: Learning to see and act
Nature, News & Views, 518(7540):486-487, 2015 (article)
Maertens, M., Wichmann, F., Shapley, R.
Context affects lightness at the level of surfaces
Journal of Vision, 15(1):1-15, 2015 (article)
Wang, C., Liu, C., Roqueiro, D., Grimm, D., Schwab, R., Becker, C., Lanz, C., Weigel, D.
Genome-wide analysis of local chromatin packing in Arabidopsis thaliana
Genome Research, 25(2):246-256, 2015 (article)