Header logo is ei



no image
Development and Evaluation of a Portable BCI System for Remote Data Acquisition

Emde, T.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

[BibTex]

[BibTex]


no image
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis

Fomina, T.

Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)

[BibTex]

[BibTex]


no image
Causal models for decision making via integrative inference

Geiger, P.

University of Stuttgart, Germany, 2017 (phdthesis)

[BibTex]

[BibTex]


no image
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation

Sücker, K.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

[BibTex]

[BibTex]

2012


no image
Scalable graph kernels

Shervashidze, N.

Eberhard Karls Universität Tübingen, Germany, October 2012 (phdthesis)

Web [BibTex]

2012

Web [BibTex]


no image
Probabilistic Modelling of Expression Variation in Modern eQTL Studies

Zwießele, M.

Eberhard Karls Universität Tübingen, Germany, October 2012 (mastersthesis)

[BibTex]

[BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J.

Technische Universität Darmstadt, Germany, March 2012 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
High Gamma-Power Predicts Performance in Brain-Computer Interfacing

Grosse-Wentrup, M., Schölkopf, B.

(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)

Abstract
Subjects operating a brain-computer interface (BCI) based on sensorimotor rhythms exhibit large variations in performance over the course of an experimental session. Here, we show that high-frequency gamma-oscillations, originating in fronto-parietal networks, predict such variations on a trial-to-trial basis. We interpret this nding as empirical support for an in uence of attentional networks on BCI-performance via modulation of the sensorimotor rhythm.

PDF [BibTex]

PDF [BibTex]


no image
Structure and Dynamics of Diffusion Networks

Gomez Rodriguez, M.

Department of Electrical Engineering, Stanford University, 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Blind Deconvolution in Scientific Imaging & Computational Photography

Hirsch, M.

Eberhard Karls Universität Tübingen, Germany, 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Machine Learning and Interpretation in Neuroimaging - Revised Selected and Invited Contributions

Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B.

pages: 266, Springer, Heidelberg, Germany, International Workshop, MLINI, Held at NIPS, 2012, Lecture Notes in Computer Science, Vol. 7263 (proceedings)

DOI [BibTex]

DOI [BibTex]


no image
MICCAI, Workshop on Computational Diffusion MRI, 2012 (electronic publication)

Panagiotaki, E., O’Donnell, L., Schultz, T., Zhang, G.

15th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Workshop on Computational Diffusion MRI , 2012 (proceedings)

PDF [BibTex]

PDF [BibTex]


no image
Mining correlated loci at a genome-wide scale

Velkov, V.

Eberhard Karls Universität Tübingen, Germany, 2012 (mastersthesis)

[BibTex]

[BibTex]

2001


no image
Kernel Methods for Extracting Local Image Semantics

Bradshaw, B., Schölkopf, B., Platt, J.

(MSR-TR-2001-99), Microsoft Research, October 2001 (techreport)

Web [BibTex]

2001

Web [BibTex]


no image
Calibration of Digital Amateur Cameras

Urbanek, M., Horaud, R., Sturm, P.

(RR-4214), INRIA Rhone Alpes, Montbonnot, France, July 2001 (techreport)

Web [BibTex]

Web [BibTex]


no image
Variationsverfahren zur Untersuchung von Grundzustandseigenschaften des Ein-Band Hubbard-Modells

Eichhorn, J.

Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

Abstract
Using different modifications of a new variational approach, statical groundstate properties of the one-band Hubbard model such as energy and staggered magnetisation are calculated. By taking into account additional fluctuations, the method ist gradually improved so that a very good description of the energy in one and two dimensions can be achieved. After a detailed discussion of the application in one dimension, extensions for two dimensions are introduced. By use of a modified version of the variational ansatz in particular a description of the quantum phase transition for the magnetisation should be possible.

PostScript [BibTex]

PostScript [BibTex]


no image
Cerebellar Control of Robot Arms

Peters, J.

Biologische Kybernetik, Technische Univeristät München, München, Germany, 2001 (diplomathesis)

[BibTex]

[BibTex]


no image
Incorporating Invariances in Non-Linear Support Vector Machines

Chapelle, O., Schölkopf, B.

Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2001 (techreport)

Abstract
We consider the problem of how to incorporate in the Support Vector Machine (SVM) framework invariances given by some a priori known transformations under which the data should be invariant. It extends some previous work which was only applicable with linear SVMs and we show on a digit recognition task that the proposed approach is superior to the traditional Virtual Support Vector method.

PostScript [BibTex]

PostScript [BibTex]


no image
On Unsupervised Learning of Mixtures of Markov Sources

Seldin, Y.

Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, 2001 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
Bound on the Leave-One-Out Error for Density Support Estimation using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Smola, A., Rayner, P.

University of Cambridge, 2001 (techreport)

[BibTex]

[BibTex]


no image
Bound on the Leave-One-Out Error for 2-Class Classification using nu-SVMs

Gretton, A., Herbrich, R., Schölkopf, B., Rayner, P.

University of Cambridge, 2001, Updated May 2003 (literature review expanded) (techreport)

Abstract
Three estimates of the leave-one-out error for $nu$-support vector (SV) machine binary classifiers are presented. Two of the estimates are based on the geometrical concept of the {em span}, which was introduced in the context of bounding the leave-one-out error for $C$-SV machine binary classifiers, while the third is based on optimisation over the criterion used to train the $nu$-support vector classifier. It is shown that the estimates presented herein provide informative and efficient approximations of the generalisation behaviour, in both a toy example and benchmark data sets. The proof strategies in the $nu$-SV context are also compared with those used to derive leave-one-out error estimates in the $C$-SV case.

PostScript [BibTex]

PostScript [BibTex]


no image
Some kernels for structured data

Bartlett, P., Schölkopf, B.

Biowulf Technologies, 2001 (techreport)

[BibTex]

[BibTex]


no image
Support Vector Machines: Theorie und Anwendung auf Prädiktion epileptischer Anfälle auf der Basis von EEG-Daten

Lal, TN.

Biologische Kybernetik, Institut für Angewandte Mathematik, Universität Bonn, 2001, Advised by Prof. Dr. S. Albeverio (diplomathesis)

ZIP [BibTex]

ZIP [BibTex]


no image
Inference Principles and Model Selection

Buhmann, J., Schölkopf, B.

(01301), Dagstuhl Seminar, 2001 (techreport)

Web [BibTex]

Web [BibTex]