Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.
Kernel Dependency Estimation
(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)
Zhou, D., Xiao, B., Zhou, H., Dai, R.
Global Geometry of SVM Classifiers
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)
Romdhani, S., Torr, P., Schölkopf, B., Blake, A.
Computationally Efficient Face Detection
(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)
Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.
Kernel-based nonlinear blind source separation
EU-Project BLISS, January 2002 (techreport)
von Luxburg, U., Bousquet, O., Schölkopf, B.
A compression approach to support vector model selection
(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)
Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design
Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)
Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.
Observations on the Nyström Method for Gaussian Process Prediction
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)
Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., Müller, K.
Robust ensemble learning
In Advances in Large Margin Classifiers, pages: 207-220, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D. Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)
Smola, A., Elisseeff, A., Schölkopf, B., Williamson, R.
Entropy numbers for convex combinations and MLPs
In Advances in Large Margin Classifiers, pages: 369-387, Neural Information Processing Series, (Editors: AJ Smola and PL Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA,, October 2000 (inbook)
Oliver, N., Schölkopf, B., Smola, A.
Natural Regularization from Generative Models
In Advances in Large Margin Classifiers, pages: 51-60, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)
Harmeling, S.
Solving Satisfiability Problems with Genetic Algorithms
In Genetic Algorithms and Genetic Programming at Stanford 2000, pages: 206-213, (Editors: Koza, J. R.), Stanford Bookstore, Stanford, CA, USA, June 2000 (inbook)
Schölkopf, B.
Statistical Learning and Kernel Methods
In CISM Courses and Lectures, International Centre for Mechanical Sciences Vol.431, CISM Courses and Lectures, International Centre for
Mechanical Sciences, 431(23):3-24, (Editors: G Della Riccia and H-J Lenz and R Kruse), Springer, Vienna, Data Fusion and Perception, 2000 (inbook)
Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.
An Introduction to Kernel-Based Learning Algorithms
In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)
Schölkopf, B.
The Kernel Trick for Distances
(MSR-TR-2000-51), Microsoft Research, Redmond, WA, USA, 2000 (techreport)
Schölkopf, B., Platt, J., Smola, A.
Kernel method for percentile feature extraction
(MSR-TR-2000-22), Microsoft Research, 2000 (techreport)