Header logo is ei


2014


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J., Peters, J.

97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)

DOI [BibTex]

2014

DOI [BibTex]


no image
Computational Diffusion MRI and Brain Connectivity

Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O’Donnell, L., Panagiotaki, E.

pages: 255, Mathematics and Visualization, Springer, 2014 (book)

Web [BibTex]

Web [BibTex]

2012


no image
High Gamma-Power Predicts Performance in Brain-Computer Interfacing

Grosse-Wentrup, M., Schölkopf, B.

(3), Max-Planck-Institut für Intelligente Systeme, Tübingen, February 2012 (techreport)

Abstract
Subjects operating a brain-computer interface (BCI) based on sensorimotor rhythms exhibit large variations in performance over the course of an experimental session. Here, we show that high-frequency gamma-oscillations, originating in fronto-parietal networks, predict such variations on a trial-to-trial basis. We interpret this nding as empirical support for an in uence of attentional networks on BCI-performance via modulation of the sensorimotor rhythm.

PDF [BibTex]

2012

PDF [BibTex]


no image
Machine Learning and Interpretation in Neuroimaging - Revised Selected and Invited Contributions

Langs, G., Rish, I., Grosse-Wentrup, M., Murphy, B.

pages: 266, Springer, Heidelberg, Germany, International Workshop, MLINI, Held at NIPS, 2012, Lecture Notes in Computer Science, Vol. 7263 (proceedings)

DOI [BibTex]

DOI [BibTex]


no image
MICCAI, Workshop on Computational Diffusion MRI, 2012 (electronic publication)

Panagiotaki, E., O’Donnell, L., Schultz, T., Zhang, G.

15th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Workshop on Computational Diffusion MRI , 2012 (proceedings)

PDF [BibTex]

PDF [BibTex]

1994


no image
View-based cognitive mapping and path planning

Schölkopf, B., Mallot, H.

(7), Max Planck Institute for Biological Cybernetics Tübingen, November 1994, This technical report has also been published elsewhere (techreport)

Abstract
We present a scheme for learning a cognitive map of a maze from a sequence of views and movement decisions. The scheme is based on an intermediate representation called the view graph. We show that this representation carries sufficient information to reconstruct the topological and directional structure of the maze. Moreover, we present a neural network that learns the view graph during a random exploration of the maze. We use a unsupervised competitive learning rule which translates temporal sequence (rather than similarity) of views into connectedness in the network. The network uses its knowledge of the topological and directional structure of the maze to generate expectations about which views are likely to be perceived next, improving the view recognition performance. We provide an additional mechanism which uses the map to find paths between arbitrary points of the previously explored environment. The results are compared to findings of behavioural neuroscience.

[BibTex]

1994

[BibTex]