Harmeling, S., Toussaint, M.
Bayesian Estimators for Robins-Ritovs Problem
(EDI-INF-RR-1189), School of Informatics, University of Edinburgh, October 2007 (techreport)
Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan, S.
Predicting Structured Data
pages: 360, Advances in neural information processing systems, MIT Press, Cambridge, MA, USA, September 2007 (book)
Walder, C., Chapelle, O.
Learning with Transformation Invariant Kernels
(165), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2007 (techreport)
Bottou, L., Chapelle, O., DeCoste, D., Weston, J.
Large-Scale Kernel Machines
pages: 416, Neural Information Processing Series, MIT Press, Cambridge, MA, USA, September 2007 (book)
Schölkopf, B., Platt, J., Hofmann, T.
Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference
Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), pages: 1690, MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (proceedings)
Kulis, B., Sra, S., Jegelka, S.
Scalable Semidefinite Programming using Convex Perturbations
(TR-07-47), University of Texas, Austin, TX, USA, September 2007 (techreport)
Walder, C., Kim, K., Schölkopf, B.
Sparse Multiscale Gaussian Process Regression
(162), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)
Blaschko, M., Hofmann, T., Lampert, C.
Efficient Subwindow Search for Object Localization
(164), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2007 (techreport)
Maier, M., Hein, M., von Luxburg, U.
Cluster Identification in Nearest-Neighbor Graphs
(163), Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany, May 2007 (techreport)
Harmeling, S.
Exploring model selection techniques for nonlinear dimensionality reduction
(EDI-INF-RR-0960), School of Informatics, University of Edinburgh, March 2007 (techreport)
Chiappa, S., Barber, D.
Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach
(161), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, March 2007 (techreport)
Sra, S., Jain, P., Dhillon, I.
Modeling data using directional distributions: Part II
(TR-07-05), University of Texas, Austin, TX, USA, February 2007 (techreport)
Breuer, P., Kim, K., Kienzle, W., Blanz, V., Schölkopf, B.
Automatic 3D Face Reconstruction from Single Images or Video
(160), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, February 2007 (techreport)
Peters, J.
Relative Entropy Policy Search
CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)
Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.
Kernel Dependency Estimation
(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)
Zhou, D., Xiao, B., Zhou, H., Dai, R.
Global Geometry of SVM Classifiers
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)
Romdhani, S., Torr, P., Schölkopf, B., Blake, A.
Computationally Efficient Face Detection
(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)
Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.
Kernel-based nonlinear blind source separation
EU-Project BLISS, January 2002 (techreport)
von Luxburg, U., Bousquet, O., Schölkopf, B.
A compression approach to support vector model selection
(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)
Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design
Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)
Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.
Observations on the Nyström Method for Gaussian Process Prediction
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)
Franz, M., Schölkopf, B., Bülthoff, H.
Homing by parameterized scene matching
(46), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, Febuary 1997 (techreport)
Schölkopf, B.
Support vector learning
pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)
Vapnik, V., Burges, C., Schölkopf, B.
A New Method for Constructing Artificial Neural Networks
AT & T Bell Laboratories, 1995 (techreport)