Header logo is ei


2009


no image
Methods for feature selection in a learning machine

Weston, J., Elisseeff, A., Schölkopf, B., Pérez-Cruz, F.

United States Patent, No 7624074, November 2009 (patent)

[BibTex]

2009

[BibTex]


no image
Toward a Theory of Consciousness

Tononi, G., Balduzzi, D.

In The Cognitive Neurosciences, pages: 1201-1220, (Editors: Gazzaniga, M.S.), MIT Press, Cambridge, MA, USA, October 2009 (inbook)

Web [BibTex]

Web [BibTex]


no image
Acquiring web page information without commitment to downloading the web page

Heilbron, L., Platt, J. C., Simard, P. Y., Schölkopf, B.

United States Patent, No 7565409, July 2009 (patent)

[BibTex]

[BibTex]


no image
Text Clustering with Mixture of von Mises-Fisher Distributions

Sra, S., Banerjee, A., Ghosh, J., Dhillon, I.

In Text mining: classification, clustering, and applications, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Data Mining for Biologists

Tsuda, K.

In Biological Data Mining in Protein Interaction Networks, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

Abstract
In this tutorial chapter, we review basics about frequent pattern mining algorithms, including itemset mining, association rule mining and graph mining. These algorithms can find frequently appearing substructures in discrete data. They can discover structural motifs, for example, from mutation data, protein structures and chemical compounds. As they have been primarily used for business data, biological applications are not so common yet, but their potential impact would be large. Recent advances in computers including multicore machines and ever increasing memory capacity support the application of such methods to larger datasets. We explain technical aspects of the algorithms, but do not go into details. Current biological applications are summarized and possible future directions are given.

Web [BibTex]

Web [BibTex]


no image
Large Margin Methods for Part of Speech Tagging

Altun, Y.

In Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

Web [BibTex]

Web [BibTex]


no image
Pre−processed feature ranking for a support vector machine

Weston, J., Elisseeff, A., Schölkopf, B., Pérez-Cruz, F., Guyon, I.

United States Patent, No. 7475048, January 2009 (patent)

[BibTex]

[BibTex]


no image
Covariate shift and local learning by distribution matching

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.

In Dataset Shift in Machine Learning, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

Abstract
Given sets of observations of training and test data, we consider the problem of re-weighting the training data such that its distribution more closely matches that of the test data. We achieve this goal by matching covariate distributions between training and test sets in a high dimensional feature space (specifically, a reproducing kernel Hilbert space). This approach does not require distribution estimation. Instead, the sample weights are obtained by a simple quadratic programming procedure. We provide a uniform convergence bound on the distance between the reweighted training feature mean and the test feature mean, a transductive bound on the expected loss of an algorithm trained on the reweighted data, and a connection to single class SVMs. While our method is designed to deal with the case of simple covariate shift (in the sense of Chapter ??), we have also found benefits for sample selection bias on the labels. Our correction procedure yields its greatest and most consistent advantages when the learning algorithm returns a classifier/regressor that is simpler" than the data might suggest.

PDF Web [BibTex]

PDF Web [BibTex]


no image
An introduction to Kernel Learning Algorithms

Gehler, P., Schölkopf, B.

In Kernel Methods for Remote Sensing Data Analysis, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

Abstract
Kernel learning algorithms are currently becoming a standard tool in the area of machine learning and pattern recognition. In this chapter we review the fundamental theory of kernel learning. As the basic building block we introduce the kernel function, which provides an elegant and general way to compare possibly very complex objects. We then review the concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we give an overview of the most prominent algorithms, which are support vector classification and regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning and structured output prediction we also introduce some more recent advancements in the field.

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2004


no image
Pattern detection methods and systems and face detection methods and systems

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 6804391, October 2004 (patent)

[BibTex]

2004

[BibTex]


no image
Advanced Lectures on Machine Learning

Bousquet, O., von Luxburg, U., Rätsch, G.

ML Summer Schools 2003, LNAI 3176, pages: 240, Springer, Berlin, Germany, ML Summer Schools, September 2004 (proceedings)

Abstract
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in T{\"u}bingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

Web [BibTex]

Web [BibTex]


no image
Pattern Recognition: 26th DAGM Symposium, LNCS, Vol. 3175

Rasmussen, C., Bülthoff, H., Giese, M., Schölkopf, B.

Proceedings of the 26th Pattern Recognition Symposium (DAGM‘04), pages: 581, Springer, Berlin, Germany, 26th Pattern Recognition Symposium, August 2004 (proceedings)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Kernel Methods in Computational Biology

Schölkopf, B., Tsuda, K., Vert, J.

pages: 410, Computational Molecular Biology, MIT Press, Cambridge, MA, USA, August 2004 (book)

Abstract
Modern machine learning techniques are proving to be extremely valuable for the analysis of data in computational biology problems. One branch of machine learning, kernel methods, lends itself particularly well to the difficult aspects of biological data, which include high dimensionality (as in microarray measurements), representation as discrete and structured data (as in DNA or amino acid sequences), and the need to combine heterogeneous sources of information. This book provides a detailed overview of current research in kernel methods and their applications to computational biology. Following three introductory chapters—an introduction to molecular and computational biology, a short review of kernel methods that focuses on intuitive concepts rather than technical details, and a detailed survey of recent applications of kernel methods in computational biology—the book is divided into three sections that reflect three general trends in current research. The first part presents different ideas for the design of kernel functions specifically adapted to various biological data; the second part covers different approaches to learning from heterogeneous data; and the third part offers examples of successful applications of support vector machine methods.

Web [BibTex]

Web [BibTex]


no image
Analysis of differential gene expression in healthy and osteoarthritic cartilage and isolated chondrocytes by microarray analysis

Aigner, T., Saas, J., Zien, A., Zimmer, R., Gebhard, P., Knorr, T.

In Volume 1: Cellular and Molecular Tools, pages: 109-128, (Editors: Sabatini, M., P. Pastoureau and F. De Ceuninck), Humana Press, July 2004 (inbook)

Abstract
The regulation of chondrocytes in osteoarthritic cartilage and the expression of specific gene products by these cells during early-onset and late-stage osteoarthritis are not well characterized. With the introduction of cDNA array technology, the measurement of thousands of different genes in one small tissue sample can be carried out. Interpretation of gene expression analyses in articular cartilage is aided by the fact that this tissue contains only one cell type in both normal and diseased conditions. However, care has to be taken not to over- and misinterpret results, and some major challenges must be overcome in order to utilize the potential of this technology properly in the field of osteoarthritis.

Web [BibTex]

Web [BibTex]


no image
Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference

Thrun, S., Saul, L., Schölkopf, B.

Proceedings of the Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 2003), pages: 1621, MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (proceedings)

Abstract
The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees—physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.

Web [BibTex]

Web [BibTex]


no image
Distributed Command Execution

Stark, S., Berlin, M.

In BSD Hacks: 100 industrial-strength tips & tools, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)

Abstract
Often you want to execute a command not only on one computer, but on several at once. For example, you might want to report the current statistics on a group of managed servers or update all of your web servers at once.

[BibTex]

[BibTex]


no image
Local Alignment Kernels for Biological Sequences

Vert, J., Saigo, H., Akutsu, T.

In Kernel Methods in Computational Biology, pages: 131-153, MIT Press, Cambridge, MA,, 2004 (inbook)

Web [BibTex]

Web [BibTex]


no image
Gaussian Processes in Machine Learning

Rasmussen, CE.

In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)

Abstract
We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Protein Classification via Kernel Matrix Completion

Kin, T., Kato, T., Tsuda, K.

In pages: 261-274, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

PDF [BibTex]

PDF [BibTex]


no image
Introduction to Statistical Learning Theory

Bousquet, O., Boucheron, S., Lugosi, G.

In Lecture Notes in Artificial Intelligence 3176, pages: 169-207, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

PDF [BibTex]

PDF [BibTex]


no image
A Primer on Kernel Methods

Vert, J., Tsuda, K., Schölkopf, B.

In Kernel Methods in Computational Biology, pages: 35-70, (Editors: B Schölkopf and K Tsuda and JP Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

PDF [BibTex]

PDF [BibTex]


no image
Concentration Inequalities

Boucheron, S., Lugosi, G., Bousquet, O.

In Lecture Notes in Artificial Intelligence 3176, pages: 208-240, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)

PDF [BibTex]

PDF [BibTex]


no image
Kernels for graphs

Kashima, H., Tsuda, K., Inokuchi, A.

In pages: 155-170, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)

PDF [BibTex]

PDF [BibTex]


no image
A primer on molecular biology

Zien, A.

In pages: 3-34, (Editors: Schoelkopf, B., K. Tsuda and J. P. Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)

Abstract
Modern molecular biology provides a rich source of challenging machine learning problems. This tutorial chapter aims to provide the necessary biological background knowledge required to communicate with biologists and to understand and properly formalize a number of most interesting problems in this application domain. The largest part of the chapter (its first section) is devoted to the cell as the basic unit of life. Four aspects of cells are reviewed in sequence: (1) the molecules that cells make use of (above all, proteins, RNA, and DNA); (2) the spatial organization of cells (``compartmentalization''); (3) the way cells produce proteins (``protein expression''); and (4) cellular communication and evolution (of cells and organisms). In the second section, an overview is provided of the most frequent measurement technologies, data types, and data sources. Finally, important open problems in the analysis of these data (bioinformatics challenges) are briefly outlined.

PDF PostScript Web [BibTex]

PDF PostScript Web [BibTex]

2002


no image
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Schölkopf, B., Smola, A.

pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Abstract
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

Web [BibTex]

2002

Web [BibTex]

2000


no image
Robust ensemble learning

Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., Müller, K.

In Advances in Large Margin Classifiers, pages: 207-220, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D. Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

[BibTex]

2000

[BibTex]


no image
Entropy numbers for convex combinations and MLPs

Smola, A., Elisseeff, A., Schölkopf, B., Williamson, R.

In Advances in Large Margin Classifiers, pages: 369-387, Neural Information Processing Series, (Editors: AJ Smola and PL Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA,, October 2000 (inbook)

[BibTex]

[BibTex]


no image
Natural Regularization from Generative Models

Oliver, N., Schölkopf, B., Smola, A.

In Advances in Large Margin Classifiers, pages: 51-60, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)

[BibTex]

[BibTex]


no image
Advances in Large Margin Classifiers

Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.

pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

Abstract
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

Web [BibTex]

Web [BibTex]


no image
Solving Satisfiability Problems with Genetic Algorithms

Harmeling, S.

In Genetic Algorithms and Genetic Programming at Stanford 2000, pages: 206-213, (Editors: Koza, J. R.), Stanford Bookstore, Stanford, CA, USA, June 2000 (inbook)

Abstract
We show how to solve hard 3-SAT problems using genetic algorithms. Furthermore, we explore other genetic operators that may be useful to tackle 3-SAT problems, and discuss their pros and cons.

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning and Kernel Methods

Schölkopf, B.

In CISM Courses and Lectures, International Centre for Mechanical Sciences Vol.431, CISM Courses and Lectures, International Centre for Mechanical Sciences, 431(23):3-24, (Editors: G Della Riccia and H-J Lenz and R Kruse), Springer, Vienna, Data Fusion and Perception, 2000 (inbook)

[BibTex]

[BibTex]


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)

[BibTex]

[BibTex]