Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.
Robot Learning
In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)
Peters, J., Bagnell, J.
Policy Gradient Methods
In Encyclopedia of Machine Learning and Data Mining, pages: 982-985, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)
Flad, N., Fomina, T., Bülthoff, H. H., Chuang, L. L.
Unsupervised clustering of EOG as a viable substitute for optical eye-tracking
In First Workshop on Eye Tracking and Visualization (ETVIS 2015), pages: 151-167, Mathematics and Visualization, (Editors: Burch, M., Chuang, L., Fisher, B., Schmidt, A., and Weiskopf, D.), Springer, 2017 (inbook)
Janzing, D.
Statistical Asymmetries Between Cause and Effect
In Time in Physics, pages: 129-139, Tutorials, Schools, and Workshops in the Mathematical Sciences, (Editors: Renner, Renato and Stupar, Sandra), Springer International Publishing, Cham, 2017 (inbook)
Peters, J., Tedrake, R., Roy, N., Morimoto, J.
Robot Learning
In Encyclopedia of Machine Learning and Data Mining, pages: 1106-1109, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)
Rätsch, G., Schölkopf, B., Smola, A., Mika, S., Onoda, T., Müller, K.
Robust ensemble learning
In Advances in Large Margin Classifiers, pages: 207-220, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D. Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)
Smola, A., Elisseeff, A., Schölkopf, B., Williamson, R.
Entropy numbers for convex combinations and MLPs
In Advances in Large Margin Classifiers, pages: 369-387, Neural Information Processing Series, (Editors: AJ Smola and PL Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA,, October 2000 (inbook)
Oliver, N., Schölkopf, B., Smola, A.
Natural Regularization from Generative Models
In Advances in Large Margin Classifiers, pages: 51-60, Neural Information Processing Series, (Editors: AJ Smola and PJ Bartlett and B Schölkopf and D Schuurmans), MIT Press, Cambridge, MA, USA, October 2000 (inbook)
Harmeling, S.
Solving Satisfiability Problems with Genetic Algorithms
In Genetic Algorithms and Genetic Programming at Stanford 2000, pages: 206-213, (Editors: Koza, J. R.), Stanford Bookstore, Stanford, CA, USA, June 2000 (inbook)
Schölkopf, B.
Statistical Learning and Kernel Methods
In CISM Courses and Lectures, International Centre for Mechanical Sciences Vol.431, CISM Courses and Lectures, International Centre for
Mechanical Sciences, 431(23):3-24, (Editors: G Della Riccia and H-J Lenz and R Kruse), Springer, Vienna, Data Fusion and Perception, 2000 (inbook)
Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.
An Introduction to Kernel-Based Learning Algorithms
In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)