Ihler, A. T., Janzing, D.
Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI)
pages: 869, AUAI Press, June 2016 (proceedings)
Köhler, R.
Advances in computational imaging: Benchmarking Deblurring Algorithms, Deep Neural Inpainting, Depth Estimation from Light Fields
Eberhard Karls Universität Tübingen, Germany, 2016 (phdthesis)
Kiefel, M.
Tractable Structured Prediction using the Permutohedral Lattice
ETH Zurich, 2016 (phdthesis)
Sra, S., Nowozin, S., Wright, S.
Optimization for Machine Learning
pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)
Barber, D., Cemgil, A., Chiappa, S.
Bayesian Time Series Models
pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)
Kakade, S., von Luxburg, U.
JMLR Workshop and Conference Proceedings Volume 19: COLT 2011
pages: 834, MIT Press, Cambridge, MA, USA, 24th Annual Conference on Learning Theory , June 2011 (proceedings)
Lang, A.
Crowdsourcing for optimisation of deconvolution methods via an iPhone application
Hochschule Reutlingen, Germany, April 2011 (mastersthesis)
Dinuzzo, F.
Learning functions with kernel methods
University of Pavia, Italy, January 2011 (phdthesis)
Lu, H., Schölkopf, B., Zhao, H.
Handbook of Statistical Bioinformatics
pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)
Nguyen-Tuong, D.
Model Learning in Robot Control
Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)
Kuss, M.
Nonlinear Multivariate Analysis with Geodesic Kernels
Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)
Bousquet, O.
Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms
Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted
Chapelle, O.
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge
Biologische Kybernetik, 2002 (phdthesis)