Header logo is ei



no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

arXiv DOI [BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Counterfactual Mean Embedding

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukatat, S.

Journal of Machine Learning Research, 2020 (article) Accepted

[BibTex]

[BibTex]


A machine learning route between band mapping and band structure
A machine learning route between band mapping and band structure

Xian*, R. P., Stimper*, V., Zacharias, M., Dong, S., Dendzik, M., Beaulieu, S., Schölkopf, B., Wolf, M., Rettig, L., Carbogno, C., Bauer, S., Ernstorfer, R.

2020, *equal contribution (misc)

arXiv [BibTex]

arXiv [BibTex]

2019


no image
Robot Learning for Muscular Systems

Büchler, D.

Technical University Darmstadt, Germany, December 2019 (phdthesis)

[BibTex]

2019

[BibTex]


no image
Real Time Probabilistic Models for Robot Trajectories

Gomez-Gonzalez, S.

Technical University Darmstadt, Germany, December 2019 (phdthesis)

[BibTex]

[BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

DOI [BibTex]

DOI [BibTex]


no image
Reinforcement Learning for a Two-Robot Table Tennis Simulation

Li, G.

RWTH Aachen University, Germany, July 2019 (mastersthesis)

[BibTex]

[BibTex]


no image
A 32-channel multi-coil setup optimized for human brain shimming at 9.4T

Aghaeifar, A., Zhou, J., Heule, R., Tabibian, B., Schölkopf, B., Jia, F., Zaitsev, M., Scheffler, K.

Magnetic Resonance in Medicine, 2019, (Early View) (article)

DOI [BibTex]

DOI [BibTex]


Multidimensional Contrast Limited Adaptive Histogram Equalization
Multidimensional Contrast Limited Adaptive Histogram Equalization

Stimper, V., Bauer, S., Ernstorfer, R., Schölkopf, B., Xian, R. P.

IEEE Access, 7, pages: 165437-165447, 2019 (article)

arXiv link (url) DOI [BibTex]

arXiv link (url) DOI [BibTex]


no image
Learning Transferable Representations

Rojas-Carulla, M.

University of Cambridge, UK, 2019 (phdthesis)

[BibTex]

[BibTex]


no image
Sample-efficient deep reinforcement learning for continuous control

Gu, S.

University of Cambridge, UK, 2019 (phdthesis)

[BibTex]


no image
Enhancing Human Learning via Spaced Repetition Optimization

Tabibian, B., Upadhyay, U., De, A., Zarezade, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the National Academy of Sciences, 2019, PNAS published ahead of print January 22, 2019 (article)

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


no image
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing

Xu, J.

Technical University of Munich, Germany, 2019 (mastersthesis)

[BibTex]

[BibTex]


Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots
Learning to Control Highly Accelerated Ballistic Movements on Muscular Robots

Büchler, D., Calandra, R., Peters, J.

2019 (article) Submitted

Abstract
High-speed and high-acceleration movements are inherently hard to control. Applying learning to the control of such motions on anthropomorphic robot arms can improve the accuracy of the control but might damage the system. The inherent exploration of learning approaches can lead to instabilities and the robot reaching joint limits at high speeds. Having hardware that enables safe exploration of high-speed and high-acceleration movements is therefore desirable. To address this issue, we propose to use robots actuated by Pneumatic Artificial Muscles (PAMs). In this paper, we present a four degrees of freedom (DoFs) robot arm that reaches high joint angle accelerations of up to 28000 °/s^2 while avoiding dangerous joint limits thanks to the antagonistic actuation and limits on the air pressure ranges. With this robot arm, we are able to tune control parameters using Bayesian optimization directly on the hardware without additional safety considerations. The achieved tracking performance on a fast trajectory exceeds previous results on comparable PAM-driven robots. We also show that our system can be controlled well on slow trajectories with PID controllers due to careful construction considerations such as minimal bending of cables, lightweight kinematics and minimal contact between PAMs and PAMs with the links. Finally, we propose a novel technique to control the the co-contraction of antagonistic muscle pairs. Experimental results illustrate that choosing the optimal co-contraction level is vital to reach better tracking performance. Through the use of PAM-driven robots and learning, we do a small step towards the future development of robots capable of more human-like motions.

Arxiv Video [BibTex]


no image
Inferring causation from time series with perspectives in Earth system sciences

Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M., van Nes, E., Peters, J., Quax, R., Reichstein, M., Scheffer, M. S. B., Spirtes, P., Sugihara, G., Sun, J., Zhang, K., Zscheischler, J.

Nature Communications, 2019 (article) In revision

[BibTex]

[BibTex]


no image
Quantification of tumor heterogeneity using PET/MRI and machine learning

Katiyar, P.

Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

[BibTex]

[BibTex]


no image
Quantum mean embedding of probability distributions

Kübler, J. M., Muandet, K., Schölkopf, B.

Physical Review Research, 1(3):033159, American Physical Society, 2019 (article)

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces

Klus, S., Schuster, I., Muandet, K.

Journal of Nonlinear Science, 2019, First Online: 21 August 2019 (article)

DOI [BibTex]

DOI [BibTex]

2012


no image
Jensen-Bregman LogDet Divergence with Application to Efficient Similarity Search for Covariance Matrices

Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9):2161-2174, December 2012 (article)

DOI [BibTex]

2012

DOI [BibTex]


no image
Hippocampal-Cortical Interaction during Periods of Subcortical Silence

Logothetis, N., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H., Besserve, M., Oeltermann, A.

Nature, 491, pages: 547-553, November 2012 (article)

Abstract
Hippocampal ripples, episodic high-frequency field-potential oscillations primarily occurring during sleep and calmness, have been described in mice, rats, rabbits, monkeys and humans, and so far they have been associated with retention of previously acquired awake experience. Although hippocampal ripples have been studied in detail using neurophysiological methods, the global effects of ripples on the entire brain remain elusive, primarily owing to a lack of methodologies permitting concurrent hippocampal recordings and whole-brain activity mapping. By combining electrophysiological recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicates that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas. These findings suggest that during off-line memory consolidation, synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centres involved in sensory processing or potentially mediating procedural learning. Such a mechanism would cause minimal interference, enabling consolidation of hippocampus-dependent memory.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Scalable graph kernels

Shervashidze, N.

Eberhard Karls Universität Tübingen, Germany, October 2012 (phdthesis)

Web [BibTex]

Web [BibTex]


no image
Probabilistic Modelling of Expression Variation in Modern eQTL Studies

Zwießele, M.

Eberhard Karls Universität Tübingen, Germany, October 2012 (mastersthesis)

[BibTex]

[BibTex]


no image
Thermodynamic limits of dynamic cooling

Allahverdyan, A., Hovhannisyan, K., Janzing, D., Mahler, G.

Physical Review E, 84(4):16, October 2012 (article)

Abstract
We study dynamic cooling, where an externally driven two-level system is cooled via reservoir, a quantum system with initial canonical equilibrium state. We obtain explicitly the minimal possible temperature Tmin>0 reachable for the two-level system. The minimization goes over all unitary dynamic processes operating on the system and reservoir and over the reservoir energy spectrum. The minimal work needed to reach Tmin grows as 1/Tmin. This work cost can be significantly reduced, though, if one is satisfied by temperatures slightly above Tmin. Our results on Tmin>0 prove unattainability of the absolute zero temperature without ambiguities that surround its derivation from the entropic version of the third law. We also study cooling via a reservoir consisting of N≫1 identical spins. Here we show that Tmin∝1/N and find the maximal cooling compatible with the minimal work determined by the free energy. Finally we discuss cooling by reservoir with an initially microcanonic state and show that although a purely microcanonic state can yield the zero temperature, the unattainability is recovered when taking into account imperfections in preparing the microcanonic state.

Web DOI [BibTex]

Web DOI [BibTex]


no image
GLIDE: GPU-Based Linear Regression for Detection of Epistasis

Kam-Thong, T., Azencott, C., Cayton, L., Pütz, B., Altmann, A., Karbalai, N., Sämann, P., Schölkopf, B., Müller-Myhsok, B., Borgwardt, K.

Human Heredity, 73(4):220-236, September 2012 (article)

Abstract
Due to recent advances in genotyping technologies, mapping phenotypes to single loci in the genome has become a standard technique in statistical genetics. However, one-locus mapping fails to explain much of the phenotypic variance in complex traits. Here, we present GLIDE, which maps phenotypes to pairs of genetic loci and systematically searches for the epistatic interactions expected to reveal part of this missing heritability. GLIDE makes use of the computational power of consumer-grade graphics cards to detect such interactions via linear regression. This enabled us to conduct a systematic two-locus mapping study on seven disease data sets from the Wellcome Trust Case Control Consortium and on in-house hippocampal volume data in 6 h per data set, while current single CPU-based approaches require more than a year’s time to complete the same task.

Web [BibTex]

Web [BibTex]


no image
Fast projection onto mixed-norm balls with applications

Sra, S.

Minining and Knowledge Discovery (DMKD), 25(2):358-377, September 2012 (article)

DOI [BibTex]

DOI [BibTex]


no image
Bayesian estimation of free energies from equilibrium simulations

Habeck, M.

Physical Review Letters, 109(10):5, September 2012 (article)

Abstract
Free energy calculations are an important tool in statistical physics and biomolecular simulation. This Letter outlines a Bayesian method to estimate free energies from equilibrium Monte Carlo simulations. A Gibbs sampler is developed that allows efficient sampling of free energies and the density of states. The Gibbs sampling output can be used to estimate expected free energy differences and their uncertainties. The probabilistic formulation offers a unifying framework for existing methods such as the weighted histogram analysis method and the multistate Bennett acceptance ratio; both are shown to be approximate versions of the full probabilistic treatment.

Web DOI [BibTex]

Web DOI [BibTex]


no image
PAC-Bayesian Inequalities for Martingales

Seldin, Y., Laviolette, F., Cesa-Bianchi, N., Shawe-Taylor, J., Auer, P.

IEEE Transactions on Information Theory, 58(12):7086-7093, June 2012 (article)

Abstract
We present a set of high-probability inequalities that control the concentration of weighted averages of multiple (possibly uncountably many) simultaneously evolving and interdependent martingales. We also present a comparison inequality that bounds expectation of a convex function of martingale difference type variables by expectation of the same function of independent Bernoulli variables. This inequality is applied to derive a tighter analog of Hoeffding-Azuma inequality.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Entropy Search for Information-Efficient Global Optimization
Entropy Search for Information-Efficient Global Optimization

Hennig, P., Schuler, C.

Journal of Machine Learning Research, 13, pages: 1809-1837, -, June 2012 (article)

Abstract
Contemporary global optimization algorithms are based on local measures of utility, rather than a probability measure over location and value of the optimum. They thus attempt to collect low function values, not to learn about the optimum. The reason for the absence of probabilistic global optimizers is that the corresponding inference problem is intractable in several ways. This paper develops desiderata for probabilistic optimization algorithms, then presents a concrete algorithm which addresses each of the computational intractabilities with a sequence of approximations and explicitly adresses the decision problem of maximizing information gain from each evaluation.

PDF Web Project Page [BibTex]

PDF Web Project Page [BibTex]


no image
Kernels for identifying patterns in datasets containing noise or transformation invariances

Schölkopf, B., Chapelle, C.

United States Patent, No. 8209269, June 2012 (patent)

[BibTex]


no image
A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP

Nere, A., Olcese, U., Balduzzi, D., Tononi, G.

PLoS ONE, 7(5):17, May 2012 (article)

Abstract
In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips.

PDF Web DOI [BibTex]


no image
Online Kernel-based Learning for Task-Space Tracking Robot Control

Nguyen-Tuong, D., Peters, J.

IEEE Transactions on Neural Networks and Learning Systems, 23(9):1417-1425, May 2012 (article)

Abstract
Abstract—Task-space control of redundant robot systems based on analytical models is known to be susceptive to modeling errors. Here, data driven model learning methods may present an interesting alternative approach. However, learning models for task-space tracking control from sampled data is an illposed problem. In particular, the same input data point can yield many different output values, which can form a non-convex solution space. Because the problem is ill-posed, models cannot be learned from such data using common regression methods. While learning of task-space control mappings is globally illposed, it has been shown in recent work that it is locally a well-defined problem. In this paper, we use this insight to formulate a local, kernel-based learning approach for online model learning for task-space tracking control. We propose a parametrization for the local model which makes an application in task-space tracking control of redundant robots possible. The model parametrization further allows us to apply the kerneltrick and, therefore, enables a formulation within the kernel learning framework. For evaluations, we show the ability of the method for online model learning for task-space tracking control of redundant robots.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
glm-ie: The Generalised Linear Models Inference and Estimation Toolbox

Nickisch, H.

Journal of Machine Learning Research, 13, pages: 1699-1703, May 2012 (article)

Abstract
The glm-ie toolbox contains scalable estimation routines for GLMs (generalised linear models) and SLMs (sparse linear models) as well as an implementation of a scalable convex variational Bayesian inference relaxation. We designed the glm-ie package to be simple, generic and easily expansible. Most of the code is written in Matlab including some The code is fully compatible to both Matlab 7.x and GNU Octave 3.3.x. Abstract Probabilistic classification, sparse linear modelling and logistic regression are covered in a common algorithmical framework.

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Information-geometric approach to inferring causal directions

Janzing, D., Mooij, J., Zhang, K., Lemeire, J., Zscheischler, J., Daniušis, P., Steudel, B., Schölkopf, B.

Artificial Intelligence, 182-183, pages: 1-31, May 2012 (article)

Abstract
While conventional approaches to causal inference are mainly based on conditional (in)dependences, recent methods also account for the shape of (conditional) distributions. The idea is that the causal hypothesis “X causes Y” imposes that the marginal distribution PX and the conditional distribution PY|X represent independent mechanisms of nature. Recently it has been postulated that the shortest description of the joint distribution PX,Y should therefore be given by separate descriptions of PX and PY|X. Since description length in the sense of Kolmogorov complexity is uncomputable, practical implementations rely on other notions of independence. Here we define independence via orthogonality in information space. This way, we can explicitly describe the kind of dependence that occurs between PY and PX|Y making the causal hypothesis “Y causes X” implausible. Remarkably, this asymmetry between cause and effect becomes particularly simple if X and Y are deterministically related. We present an inference method that works in this case. We also discuss some theoretical results for the non-deterministic case although it is not clear how to employ them for a more general inference method.

Web DOI [BibTex]

Web DOI [BibTex]