Header logo is ei


1999


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites in DNA

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lemmen, C., Smola, A., Lengauer, T., Müller, K.

In German Conference on Bioinformatics (GCB 1999), October 1999 (inproceedings)

Abstract
In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points from which regions encoding pro­ teins start, the so­called translation initiation sites (TIS). This can be modeled as a classification prob­ lem. We demonstrate the power of support vector machines (SVMs) for this task, and show how to suc­ cessfully incorporate biological prior knowledge by engineering an appropriate kernel function.

Web [BibTex]

1999

Web [BibTex]


no image
Shrinking the tube: a new support vector regression algorithm

Schölkopf, B., Bartlett, P., Smola, A., Williamson, R.

In Advances in Neural Information Processing Systems 11, pages: 330-336 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, 12th Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel PCA and De-noising in feature spaces

Mika, S., Schölkopf, B., Smola, A., Müller, K., Scholz, M., Rätsch, G.

In Advances in Neural Information Processing Systems 11, pages: 536-542 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, 12th Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)

Abstract
Kernel PCA as a nonlinear feature extractor has proven powerful as a preprocessing step for classification algorithms. But it can also be considered as a natural generalization of linear principal component analysis. This gives rise to the question how to use nonlinear features for data compression, reconstruction, and de-noising, applications common in linear PCA. This is a nontrivial task, as the results provided by kernel PCA live in some high dimensional feature space and need not have pre-images in input space. This work presents ideas for finding approximate pre-images, focusing on Gaussian kernels, and shows experimental results using these pre-images in data reconstruction and de-noising on toy examples as well as on real world data.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semiparametric support vector and linear programming machines

Smola, A., Friess, T., Schölkopf, B.

In Advances in Neural Information Processing Systems 11, pages: 585-591 , (Editors: MS Kearns and SA Solla and DA Cohn), MIT Press, Cambridge, MA, USA, Twelfth Annual Conference on Neural Information Processing Systems (NIPS), June 1999 (inproceedings)

Abstract
Semiparametric models are useful tools in the case where domain knowledge exists about the function to be estimated or emphasis is put onto understandability of the model. We extend two learning algorithms - Support Vector machines and Linear Programming machines to this case and give experimental results for SV machines.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Classification on proximity data with LP-machines

Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Müller, K., Obermayer, K., Williamson, R.

In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 304-309, Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Kernel-dependent support vector error bounds

Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.

In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 103-108 , Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Linear programs for automatic accuracy control in regression

Smola, A., Schölkopf, B., Rätsch, G.

In Artificial Neural Networks, 1999. ICANN 99, 470, pages: 575-580 , Conference Publications , IEEE, 9th International Conference on Artificial Neural Networks, 1999 (inproceedings)

DOI [BibTex]

DOI [BibTex]


no image
Classifying LEP data with support vector algorithms.

Vannerem, P., Müller, K., Smola, A., Schölkopf, B., Söldner-Rembold, S.

In Artificial Intelligence in High Energy Nuclear Physics 99, Artificial Intelligence in High Energy Nuclear Physics 99, 1999 (inproceedings)

[BibTex]

[BibTex]


no image
Is the Hippocampus a Kalman Filter?

Bousquet, O., Balakrishnan, K., Honavar, V.

In Proceedings of the Pacific Symposium on Biocomputing, 3, pages: 619-630, Proceedings of the Pacific Symposium on Biocomputing, 1999 (inproceedings)

[BibTex]

[BibTex]


no image
A Comparison of Artificial Neural Networks and Cluster Analysis for Typing Biometrics Authentication

Maisuria, K., Ong, CS., Lai, .

In unknown, pages: 9999-9999, International Joint Conference on Neural Networks, 1999 (inproceedings)

PDF [BibTex]

PDF [BibTex]


no image
Regularized principal manifolds.

Smola, A., Williamson, R., Mika, S., Schölkopf, B.

In Lecture Notes in Artificial Intelligence, Vol. 1572, 1572, pages: 214-229 , Lecture Notes in Artificial Intelligence, (Editors: P Fischer and H-U Simon), Springer, Berlin, Germany, Computational Learning Theory: 4th European Conference, 1999 (inproceedings)

[BibTex]

[BibTex]


no image
Entropy numbers, operators and support vector kernels.

Williamson, R., Smola, A., Schölkopf, B.

In Lecture Notes in Artificial Intelligence, Vol. 1572, 1572, pages: 285-299, Lecture Notes in Artificial Intelligence, (Editors: P Fischer and H-U Simon), Springer, Berlin, Germany, Computational Learning Theory: 4th European Conference, 1999 (inproceedings)

[BibTex]

[BibTex]


no image
Fisher discriminant analysis with kernels

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Müller, K.

In Proceedings of the 1999 IEEE Signal Processing Society Workshop, 9, pages: 41-48, (Editors: Y-H Hu and J Larsen and E Wilson and S Douglas), IEEE, Neural Networks for Signal Processing IX, 1999 (inproceedings)

DOI [BibTex]

DOI [BibTex]

1996


no image
Quality Prediction of Steel Products using Neural Networks

Shin, H., Jhee, W.

In Proc. of the Korean Expert System Conference, pages: 112-124, Korean Expert System Society Conference, November 1996 (inproceedings)

[BibTex]

1996

[BibTex]


no image
Comparison of view-based object recognition algorithms using realistic 3D models

Blanz, V., Schölkopf, B., Bülthoff, H., Burges, C., Vapnik, V., Vetter, T.

In Artificial Neural Networks: ICANN 96, LNCS, vol. 1112, pages: 251-256, Lecture Notes in Computer Science, (Editors: C von der Malsburg and W von Seelen and JC Vorbrüggen and B Sendhoff), Springer, Berlin, Germany, 6th International Conference on Artificial Neural Networks, July 1996 (inproceedings)

Abstract
Two view-based object recognition algorithms are compared: (1) a heuristic algorithm based on oriented filters, and (2) a support vector learning machine trained on low-resolution images of the objects. Classification performance is assessed using a high number of images generated by a computer graphics system under precisely controlled conditions. Training- and test-images show a set of 25 realistic three-dimensional models of chairs from viewing directions spread over the upper half of the viewing sphere. The percentage of correct identification of all 25 objects is measured.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Incorporating invariances in support vector learning machines

Schölkopf, B., Burges, C., Vapnik, V.

In Artificial Neural Networks: ICANN 96, LNCS vol. 1112, pages: 47-52, (Editors: C von der Malsburg and W von Seelen and JC Vorbrüggen and B Sendhoff), Springer, Berlin, Germany, 6th International Conference on Artificial Neural Networks, July 1996, volume 1112 of Lecture Notes in Computer Science (inproceedings)

Abstract
Developed only recently, support vector learning machines achieve high generalization ability by minimizing a bound on the expected test error; however, so far there existed no way of adding knowledge about invariances of a classification problem at hand. We present a method of incorporating prior knowledge about transformation invariances by applying transformations to support vectors, the training examples most critical for determining the classification boundary.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
A practical Monte Carlo implementation of Bayesian learning

Rasmussen, CE.

In Advances in Neural Information Processing Systems 8, pages: 598-604, (Editors: Touretzky, D.S. , M.C. Mozer, M.E. Hasselmo), MIT Press, Cambridge, MA, USA, Ninth Annual Conference on Neural Information Processing Systems (NIPS), June 1996 (inproceedings)

Abstract
A practical method for Bayesian training of feed-forward neural networks using sophisticated Monte Carlo methods is presented and evaluated. In reasonably small amounts of computer time this approach outperforms other state-of-the-art methods on 5 datalimited tasks from real world domains.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Gaussian Processes for Regression

Williams, CKI., Rasmussen, CE.

In Advances in neural information processing systems 8, pages: 514-520, (Editors: Touretzky, D.S. , M.C. Mozer, M.E. Hasselmo), MIT Press, Cambridge, MA, USA, Ninth Annual Conference on Neural Information Processing Systems (NIPS), June 1996 (inproceedings)

Abstract
The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior over functions. We investigate the use of a Gaussian process prior over functions, which permits the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.

PDF Web [BibTex]

PDF Web [BibTex]

1995


no image
View-based cognitive map learning by an autonomous robot

Mallot, H., Bülthoff, H., Georg, P., Schölkopf, B., Yasuhara, K.

In Proceedings International Conference on Artificial Neural Networks, vol. 2, pages: 381-386, (Editors: Fogelman-Soulié, F.), EC2, Paris, France, Conférence Internationale sur les Réseaux de Neurones Artificiels (ICANN '95), October 1995 (inproceedings)

Abstract
This paper presents a view-based approach to map learning and navigation in mazes. By means of graph theory we have shown that the view-graph is a sufficient representation for map behaviour such as path planning. A neural network for unsupervised learning of the view-graph from sequences of views is constructed. We use a modified Kohonen (1988) learning rule that transforms temporal sequence (rather than featural similarity) into connectedness. In the main part of the paper, we present a robot implementation of the scheme. The results show that the proposed network is able to support map behaviour in simple environments.

PDF [BibTex]

1995

PDF [BibTex]


no image
Extracting support data for a given task

Schölkopf, B., Burges, C., Vapnik, V.

In First International Conference on Knowledge Discovery & Data Mining (KDD-95), pages: 252-257, (Editors: UM Fayyad and R Uthurusamy), AAAI Press, Menlo Park, CA, USA, August 1995 (inproceedings)

Abstract
We report a novel possibility for extracting a small subset of a data base which contains all the information necessary to solve a given classification task: using the Support Vector Algorithm to train three different types of handwritten digit classifiers, we observed that these types of classifiers construct their decision surface from strongly overlapping small (k: 4%) subsets of the data base. This finding opens up the possibiiity of compressing data bases significantly by disposing of the data which is not important for the solution of a given task. In addition, we show that the theory allows us to predict the classifier that will have the best generalization ability, based solely on performance on the training set and characteristics of the learning machines. This finding is important for cases where the amount of available data is limited.

PDF [BibTex]

PDF [BibTex]