Toussaint, M., Storkey, A., Harmeling, S.
Expectation-Maximization methods for solving (PO)MDPs and optimal control problems
In Inference and Learning in Dynamic Models, (Editors: Barber, D., Cemgil, A.T. and Chiappa, S.), Cambridge University Press, Cambridge, UK, January 2012 (inbook) In press
Bruzzone, L., Persello, C., Demir, B.
Active Learning Methods in Classification of Remote Sensing Images
In Signal and Image Processing for Remote Sensing, (Editors: CH Chen), CRC Press, Boca Raton, FL, USA, January 2012 (inbook) In press
Habeck, M.
Inferential structure determination from NMR data
In Bayesian methods in structural bioinformatics, pages: 287-312, (Editors: Hamelryck, T., Mardia, K. V. and Ferkinghoff-Borg, J.), Springer, New York, 2012 (inbook)
Sigaud, O., Peters, J.
Robot Learning
In Encyclopedia of the sciences of learning, (Editors: Seel, N.M.), Springer, Berlin, Germany, 2012 (inbook)
Kober, J., Peters, J.
Reinforcement Learning in Robotics: A Survey
In Reinforcement Learning, 12, pages: 579-610, (Editors: Wiering, M. and Otterlo, M.), Springer, Berlin, Germany, 2012 (inbook)
Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.
Higher-Order Tensors in Diffusion MRI
In Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data, (Editors: Westin, C. F., Vilanova, A. and Burgeth, B.), Springer, 2012 (inbook) Accepted
Walder, C., Breidt, M., Bülthoff, H., Schölkopf, B., Curio, C.
Markerless tracking of Dynamic 3D Scans of Faces
In Dynamic Faces: Insights from Experiments and Computation, pages: 255-276, (Editors: Curio, C., Bülthoff, H. H. and Giese, M. A.), MIT Press, Cambridge, MA, USA, December 2010 (inbook)
Peters, J., Bagnell, J.
Policy Gradient Methods
In Encyclopedia of Machine Learning, pages: 774-776, (Editors: Sammut, C. and Webb, G. I.), Springer, Berlin, Germany, December 2010 (inbook)
Detry, R., Baseski, E., Popovic, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J.
Learning Continuous Grasp Affordances by Sensorimotor Exploration
In From Motor Learning to Interaction Learning in Robots, pages: 451-465, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Kober, J., Mohler, B., Peters, J.
Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling
In From Motor Learning to Interaction Learning in Robots, pages: 209-225, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Sigaud, O., Peters, J.
From Motor Learning to Interaction Learning in Robots
In From Motor Learning to Interaction Learning in Robots, pages: 1-12, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Nguyen-Tuong, D., Seeger, M., Peters, J.
Real-Time Local GP Model Learning
In From Motor Learning to Interaction Learning in Robots, 264, pages: 193-207, Studies in Computational Intelligence, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)
Charpiat, G., Bezrukov, I., Hofmann, M., Altun, Y., Schölkopf, B.
Machine Learning Methods for Automatic Image Colorization
In Computational Photography: Methods and Applications, pages: 395-418, Digital Imaging and Computer Vision, (Editors: Lukac, R.), CRC Press, Boca Raton, FL, USA, 2010 (inbook)
Bruzzone, L., Persello, C.
Approaches Based on Support Vector Machine to Classification of Remote Sensing Data
In Handbook of Pattern Recognition and Computer Vision, pages: 329-352, (Editors: Chen, C.H.), ICP, London, UK, 2010 (inbook)
Schölkopf, B., Smola, A.
Support Vector Machines
In Handbook of Brain Theory and Neural Networks (2nd edition), pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)
Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.
Extension of the nu-SVM range for classification
In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)
Schölkopf, B.
An Introduction to Support Vector Machines
In Recent Advances and Trends in Nonparametric Statistics
, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)
Schölkopf, B., Guyon, I., Weston, J.
Statistical Learning and Kernel Methods in Bioinformatics
In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)
Navia-Vázquez, A., Schölkopf, B.
Statistical Learning and Kernel Methods
In Adaptivity and Learning—An Interdisciplinary Debate, pages: 161-186, (Editors: R.Kühn and R Menzel and W Menzel and U Ratsch and MM Richter and I-O Stamatescu), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)
Schölkopf, B., Smola, A.
A Short Introduction to Learning with Kernels
In Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)
Smola, A., Schölkopf, B.
Bayesian Kernel Methods
In Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)
Elisseeff, A., Pontil, M.
Stability of ensembles of kernel machines
In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)