64 results
(View BibTeX file of all listed publications)

**Maschinelles Lernen: Entwicklung ohne Grenzen?**
In *Mit Optimismus in die Zukunft schauen. Künstliche Intelligenz - Chancen und Rahmenbedingungen*, pages: 26-34, (Editors: Bender, G. and Herbrich, R. and Siebenhaar, K.), B&S Siebenhaar Verlag, 2018 (incollection)

**Methods in Psychophysics**
In *Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience*, 5 (Methodology), 7, 4th, John Wiley & Sons, Inc., 2018 (inbook)

**Transfer Learning for BCIs**
In *Brain–Computer Interfaces Handbook*, pages: 425-442, 22, (Editors: Chang S. Nam, Anton Nijholt and Fabien Lotte), CRC Press, 2018 (incollection)

**A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)**
In *Brain-Computer Interface Research*, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

**Semi-supervised learning in causal and anticausal settings**
In *Empirical Inference*, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Tractable large-scale optimization in machine learning**
In *Tractability: Practical Approaches to Hard Problems*, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

**Animating Samples from Gaussian Distributions**
(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

**Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era**
*arXiv:1309.0653*, 2013 (techreport)

**Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars**
*arXiv:1309.0654*, 2013 (techreport)

**On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension**
In *Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik*, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Learning an Interactive Segmentation System**
Max Planck Institute for Biological Cybernetics, December 2009 (techreport)

**Detection of objects in noisy images and site percolation on square lattices**
(2009-035), EURANDOM, Technische Universiteit Eindhoven, November 2009 (techreport)

**An Incremental GEM Framework for Multiframe Blind Deconvolution, Super-Resolution, and Saturation Correction**
(187), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

**Efficient Filter Flow for Space-Variant Multiframe Blind Deconvolution**
(188), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2009 (techreport)

**Algebraic polynomials and moments of stochastic integrals**
(2009-031), EURANDOM, Technische Universiteit Eindhoven, October 2009 (techreport)

**Toward a Theory of Consciousness**
In *The Cognitive Neurosciences*, pages: 1201-1220, (Editors: Gazzaniga, M.S.), MIT Press, Cambridge, MA, USA, October 2009 (inbook)

**Expectation Propagation on the Maximum of Correlated Normal Variables**
Cavendish Laboratory: University of Cambridge, July 2009 (techreport)

**Consistent Nonparametric Tests of Independence**
(172), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, July 2009 (techreport)

**Text Clustering with Mixture of von Mises-Fisher Distributions**
In *Text mining: classification, clustering, and applications*, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

**Semi-supervised subspace analysis of human functional magnetic resonance imaging data**
(185), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2009 (techreport)

**Data Mining for Biologists**
In *Biological Data Mining in Protein Interaction Networks*, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

**Model selection, large deviations and consistency of data-driven tests**
(2009-007), EURANDOM, Technische Universiteit Eindhoven, March 2009 (techreport)

**Large Margin Methods for Part of Speech Tagging**
In *Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods*, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

**Covariate shift and local learning by distribution matching**
In *Dataset Shift in Machine Learning*, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

**An introduction to Kernel Learning Algorithms**
In *Kernel Methods for Remote Sensing Data Analysis*, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

**Support Vector Channel Selection in BCI**
(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)

**Technical report on
Separation methods for nonlinear
mixtures**
(D29), EU-Project BLISS, October 2003 (techreport)

**Image Reconstruction by Linear Programming**
(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)

**Technical report on implementation
of linear methods and validation on
acoustic sources**
EU-Project BLISS, September 2003 (techreport)

**On optimization, parallelization and convergence of the Expectation-Maximization algorithm for finite mixtures of Bernoulli distributions.**
Helsinki University of Technology, Helsinki, Finland, August 2003 (techreport)

**Ranking on Data Manifolds**
(113), Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, June 2003 (techreport)

**Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis**
(109), MPI f. biologische Kybernetik, Tuebingen, June 2003 (techreport)

**Learning with Local and Global Consistency**
(112), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, June 2003 (techreport)

**The Metric Nearness Problem with Applications**
Univ. of Texas at Austin, June 2003 (techreport)

**Implicit Wiener Series**
(114), Max Planck Institute for Biological Cybernetics, June 2003 (techreport)

**Machine Learning approaches to protein ranking: discriminative, semi-supervised, scalable algorithms**
(111), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2003 (techreport)

**The Geometry Of Kernel Canonical Correlation Analysis**
(108), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2003 (techreport)

**The Kernel Mutual Information**
Max Planck Institute for Biological Cybernetics, April 2003 (techreport)

**Expectation Maximization for Clustering on Hyperspheres**
Univ. of Texas at Austin, February 2003 (techreport)

**Modeling Data using Directional Distributions**
Univ. of Texas at Austin, January 2003 (techreport)

**A Note on Parameter Tuning for On-Line Shifting Algorithms**
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003 (techreport)

**Support Vector Machines**
In *Handbook of Brain Theory and Neural Networks (2nd edition)*, pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)

**Prediction at an Uncertain Input for Gaussian Processes and Relevance Vector Machines - Application to Multiple-Step Ahead Time-Series Forecasting**
(IMM-2003-18), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003 (techreport)

**Extension of the nu-SVM range for classification**
In *Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190*, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

**An Introduction to Support Vector Machines**
In *Recent Advances and Trends in Nonparametric Statistics
*, pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)

**Statistical Learning and Kernel Methods in Bioinformatics**
In *Artificial Intelligence and Heuristic Methods in Bioinformatics*, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)

**Interactive Images**
(MSR-TR-2003-64), Microsoft Research, Cambridge, UK, 2003 (techreport)

**Statistical Learning and Kernel Methods**
In *Adaptivity and Learning—An Interdisciplinary Debate*, pages: 161-186, (Editors: R.Kühn and R Menzel and W Menzel and U Ratsch and MM Richter and I-O Stamatescu), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

**A Short Introduction to Learning with Kernels**
In *Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600*, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

**Bayesian Kernel Methods**
In *Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600*, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)