Header logo is ei


2011


no image
Projected Newton-type methods in machine learning

Schmidt, M., Kim, D., Sra, S.

In Optimization for Machine Learning, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

Abstract
We consider projected Newton-type methods for solving large-scale optimization problems arising in machine learning and related fields. We first introduce an algorithmic framework for projected Newton-type methods by reviewing a canonical projected (quasi-)Newton method. This method, while conceptually pleasing, has a high computation cost per iteration. Thus, we discuss two variants that are more scalable, namely, two-metric projection and inexact projection methods. Finally, we show how to apply the Newton-type framework to handle non-smooth objectives. Examples are provided throughout the chapter to illustrate machine learning applications of our framework.

PDF Web [BibTex]

2011

PDF Web [BibTex]


no image
Statistical Learning Theory: Models, Concepts, and Results

von Luxburg, U., Schölkopf, B.

In Handbook of the History of Logic, Vol. 10: Inductive Logic, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

Abstract
Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms and is arguably one of the most beautifully developed branches of artificial intelligence in general. It originated in Russia in the 1960s and gained wide popularity in the 1990s following the development of the so-called Support Vector Machine (SVM), which has become a standard tool for pattern recognition in a variety of domains ranging from computer vision to computational biology. Providing the basis of new learning algorithms, however, was not the only motivation for developing statistical learning theory. It was just as much a philosophical one, attempting to answer the question of what it is that allows us to draw valid conclusions from empirical data. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We do not assume that the reader has a deep background in mathematics, statistics, or computer science. Given the nature of the subject matter, however, some familiarity with mathematical concepts and notations and some intuitive understanding of basic probability is required. There exist many excellent references to more technical surveys of the mathematics of statistical learning theory: the monographs by one of the founders of statistical learning theory ([Vapnik, 1995], [Vapnik, 1998]), a brief overview over statistical learning theory in Section 5 of [Sch{\"o}lkopf and Smola, 2002], more technical overview papers such as [Bousquet et al., 2003], [Mendelson, 2003], [Boucheron et al., 2005], [Herbrich and Williamson, 2002], and the monograph [Devroye et al., 1996].

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

Seldin, Y., Laviolette, F., Shawe-Taylor, J., Peters, J., Auer, P.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)

Abstract
We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary Correction of Optical Aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

PDF [BibTex]

PDF [BibTex]


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

[BibTex]


no image
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

Nickisch, H., Seeger, M.

Max Planck Institute for Biological Cybernetics, March 2011 (techreport)

Abstract
We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classification that is lower bound of the marginal likelihood and contains many regularised risk approaches as special cases. Furthermore, we derive an efficient and provably convergent optimisation algorithm.

Web [BibTex]

Web [BibTex]


no image
Learning functions with kernel methods

Dinuzzo, F.

University of Pavia, Italy, January 2011 (phdthesis)

PDF [BibTex]

PDF [BibTex]


no image
Multiple testing, uncertainty and realistic pictures

Langovoy, M., Wittich, O.

(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)

Abstract
We study statistical detection of grayscale objects in noisy images. The object of interest is of unknown shape and has an unknown intensity, that can be varying over the object and can be negative. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. We propose an algorithm that can be used to detect grayscale objects of unknown shapes in the presence of nonparametric noise of unknown level. Our algorithm is based on a nonparametric multiple testing procedure. We establish the limit of applicability of our method via an explicit, closed-form, non-asymptotic and nonparametric consistency bound. This bound is valid for a wide class of nonparametric noise distributions. We achieve this by proving an uncertainty principle for percolation on nite lattices.

PDF [BibTex]

PDF [BibTex]


no image
Robot Learning

Peters, J., Tedrake, R., Roy, N., Morimoto, J.

In Encyclopedia of Machine Learning, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI

Ihme, K., Zander, TO.

In Affective Computing and Intelligent Interaction, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

Abstract
When using eye movements for cursor control in human-computer interaction (HCI), it may be difficult to find an appropriate substitute for the click operation. Most approaches make use of dwell times. However, in this context the so-called Midas-Touch-Problem occurs which means that the system wrongly interprets fixations due to long processing times or spontaneous dwellings of the user as command. Lately it has been shown that brain-computer interface (BCI) input bears good prospects to overcome this problem using imagined hand movements to elicit a selection. The current approach tries to develop this idea further by exploring potential signals for the use in a passive BCI, which would have the advantage that the brain signals used as input are generated automatically without conscious effort of the user. To explore event-related potentials (ERPs) giving information about the user’s intention to select an object, 32-channel electroencephalography (EEG) was recorded from ten participants interacting with a dwell-time-based system. Comparing ERP signals during the dwell time with those occurring during fixations on a neutral cross hair, a sustained negative slow cortical potential at central electrode sites was revealed. This negativity might be a contingent negative variation (CNV) reflecting the participants’ anticipation of the upcoming selection. Offline classification suggests that the CNV is detectable in single trial (mean accuracy 74.9 %). In future, research on the CNV should be accomplished to ensure its stable occurence in human-computer interaction and render possible its use as a potential substitue for the click operation.

DOI [BibTex]

DOI [BibTex]


no image
Kernel Methods in Bioinformatics

Borgwardt, KM.

In Handbook of Statistical Bioinformatics, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

Abstract
Kernel methods have now witnessed more than a decade of increasing popularity in the bioinformatics community. In this article, we will compactly review this development, examining the areas in which kernel methods have contributed to computational biology and describing the reasons for their success.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Cue Combination: Beyond Optimality

Rosas, P., Wichmann, F.

In Sensory Cue Integration, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

[BibTex]

[BibTex]


no image
Nonconvex proximal splitting: batch and incremental algorithms

Sra, S.

(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)

Abstract
Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-based batch and incremental (online like) nonconvex proximal splitting algorithms. To our knowledge, this is the rst time that such perturbation-based nonconvex splitting algorithms are being proposed and analyzed. While the main contribution of the paper is the theoretical framework, we complement our results by presenting some empirical results on matrix factorization.

PDF [BibTex]

PDF [BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

[BibTex]

[BibTex]

2003


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination [3] and Zero-Norm Optimization [13] which are based on the training of Support Vector Machines (SVM) [11]. These algorithms can provide more accurate solutions than standard filter methods for feature selection [14]. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

PDF Web [BibTex]

2003

PDF Web [BibTex]


no image
Technical report on Separation methods for nonlinear mixtures

Jutten, C., Karhunen, J., Almeida, L., Harmeling, S.

(D29), EU-Project BLISS, October 2003 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Image Reconstruction by Linear Programming

Tsuda, K., Rätsch, G.

(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

[BibTex]

[BibTex]


no image
Technical report on implementation of linear methods and validation on acoustic sources

Harmeling, S., Bünau, P., Ziehe, A., Pham, D.

EU-Project BLISS, September 2003 (techreport)

PDF [BibTex]

PDF [BibTex]


no image
Ranking on Data Manifolds

Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.

(113), Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, June 2003 (techreport)

Abstract
The Google search engine has had a huge success with its PageRank web page ranking algorithm, which exploits global, rather than local, hyperlink structure of the World Wide Web using random walk. This algorithm can only be used for graph data, however. Here we propose a simple universal ranking algorithm for vectorial data, based on the exploration of the intrinsic global geometric structure revealed by a huge amount of data. Experimental results from image and text to bioinformatics illustrates the validity of our algorithm.

PDF [BibTex]

PDF [BibTex]


no image
Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis

Kim, K., Franz, M., Schölkopf, B.

(109), MPI f. biologische Kybernetik, Tuebingen, June 2003 (techreport)

Abstract
A new method for performing a kernel principal component analysis is proposed. By kernelizing the generalized Hebbian algorithm, one can iteratively estimate the principal components in a reproducing kernel Hilbert space with only linear order memory complexity. The derivation of the method, a convergence proof, and preliminary applications in image hyperresolution are presented. In addition, we discuss the extension of the method to the online learning of kernel principal components.

PDF [BibTex]

PDF [BibTex]


no image
Learning with Local and Global Consistency

Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.

(112), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, June 2003 (techreport)

Abstract
We consider the learning problem in the transductive setting. Given a set of points of which only some are labeled, the goal is to predict the label of the unlabeled points. A principled clue to solve such a learning problem is the consistency assumption that a classifying function should be sufficiently smooth with respect to the structure revealed by these known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

[BibTex]

[BibTex]


no image
Ladungsträgerdynamik in optisch angeregten GaAs-Quantendrähten:Relaxation und Transport

Pfingsten, T.

Biologische Kybernetik, Institut für Festkörpertheorie, WWU Münster, June 2003 (diplomathesis)

PDF [BibTex]

PDF [BibTex]


no image
The Metric Nearness Problem with Applications

Dhillon, I., Sra, S., Tropp, J.

Univ. of Texas at Austin, June 2003 (techreport)

GZIP [BibTex]

GZIP [BibTex]


no image
Implicit Wiener Series

Franz, M., Schölkopf, B.

(114), Max Planck Institute for Biological Cybernetics, June 2003 (techreport)

Abstract
The Wiener series is one of the standard methods to systematically characterize the nonlinearity of a neural system. The classical estimation method of the expansion coefficients via cross-correlation suffers from severe problems that prevent its application to high-dimensional and strongly nonlinear systems. We propose a new estimation method based on regression in a reproducing kernel Hilbert space that overcomes these problems. Numerical experiments show performance advantages in terms of convergence, interpretability and system size that can be handled.

PDF [BibTex]

PDF [BibTex]


no image
Machine Learning approaches to protein ranking: discriminative, semi-supervised, scalable algorithms

Weston, J., Leslie, C., Elisseeff, A., Noble, W.

(111), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2003 (techreport)

Abstract
A key tool in protein function discovery is the ability to rank databases of proteins given a query amino acid sequence. The most successful method so far is a web-based tool called PSI-BLAST which uses heuristic alignment of a profile built using the large unlabeled database. It has been shown that such use of global information via an unlabeled data improves over a local measure derived from a basic pairwise alignment such as performed by PSI-BLAST's predecessor, BLAST. In this article we look at ways of leveraging techniques from the field of machine learning for the problem of ranking. We show how clustering and semi-supervised learning techniques, which aim to capture global structure in data, can significantly improve over PSI-BLAST.

PDF [BibTex]

PDF [BibTex]


no image
The Geometry Of Kernel Canonical Correlation Analysis

Kuss, M., Graepel, T.

(108), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2003 (techreport)

Abstract
Canonical correlation analysis (CCA) is a classical multivariate method concerned with describing linear dependencies between sets of variables. After a short exposition of the linear sample CCA problem and its analytical solution, the article proceeds with a detailed characterization of its geometry. Projection operators are used to illustrate the relations between canonical vectors and variates. The article then addresses the problem of CCA between spaces spanned by objects mapped into kernel feature spaces. An exact solution for this kernel canonical correlation (KCCA) problem is derived from a geometric point of view. It shows that the expansion coefficients of the canonical vectors in their respective feature space can be found by linear CCA in the basis induced by kernel principal component analysis. The effect of mappings into higher dimensional feature spaces is considered critically since it simplifies the CCA problem in general. Then two regularized variants of KCCA are discussed. Relations to other methods are illustrated, e.g., multicategory kernel Fisher discriminant analysis, kernel principal component regression and possible applications thereof in blind source separation.

PDF [BibTex]

PDF [BibTex]


no image
Kernel Methods for Classification and Signal Separation

Gretton, A.

pages: 226, Biologische Kybernetik, University of Cambridge, Cambridge, April 2003 (phdthesis)

PostScript [BibTex]

PostScript [BibTex]


no image
The Kernel Mutual Information

Gretton, A., Herbrich, R., Smola, A.

Max Planck Institute for Biological Cybernetics, April 2003 (techreport)

Abstract
We introduce two new functions, the kernel covariance (KC) and the kernel mutual information (KMI), to measure the degree of independence of several continuous random variables. The former is guaranteed to be zero if and only if the random variables are pairwise independent; the latter shares this property, and is in addition an approximate upper bound on the mutual information, as measured near independence, and is based on a kernel density estimate. We show that Bach and Jordan‘s kernel generalised variance (KGV) is also an upper bound on the same kernel density estimate, but is looser. Finally, we suggest that the addition of a regularising term in the KGV causes it to approach the KMI, which motivates the introduction of this regularisation. The performance of the KC and KMI is verified in the context of instantaneous independent component analysis (ICA), by recovering both artificial and real (musical) signals following linear mixing.

PostScript [BibTex]

PostScript [BibTex]


no image
Expectation Maximization for Clustering on Hyperspheres

Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.

Univ. of Texas at Austin, February 2003 (techreport)

GZIP [BibTex]

GZIP [BibTex]


no image
Modeling Data using Directional Distributions

Dhillon, I., Sra, S.

Univ. of Texas at Austin, January 2003 (techreport)

GZIP [BibTex]

GZIP [BibTex]


no image
A Note on Parameter Tuning for On-Line Shifting Algorithms

Bousquet, O.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003 (techreport)

Abstract
In this short note, building on ideas of M. Herbster [2] we propose a method for automatically tuning the parameter of the FIXED-SHARE algorithm proposed by Herbster and Warmuth [3] in the context of on-line learning with shifting experts. We show that this can be done with a memory requirement of $O(nT)$ and that the additional loss incurred by the tuning is the same as the loss incurred for estimating the parameter of a Bernoulli random variable.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Support Vector Machines

Schölkopf, B., Smola, A.

In Handbook of Brain Theory and Neural Networks (2nd edition), pages: 1119-1125, (Editors: MA Arbib), MIT Press, Cambridge, MA, USA, 2003 (inbook)

[BibTex]

[BibTex]


no image
Prediction at an Uncertain Input for Gaussian Processes and Relevance Vector Machines - Application to Multiple-Step Ahead Time-Series Forecasting

Quiñonero-Candela, J., Girard, A., Rasmussen, C.

(IMM-2003-18), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2003 (techreport)

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Large margin Methods in Label Sequence Learning

Altun, Y.

Brown University, Providence, RI, USA, 2003 (mastersthesis)

[BibTex]

[BibTex]


no image
Extension of the nu-SVM range for classification

Perez-Cruz, F., Weston, J., Herrmann, D., Schölkopf, B.

In Advances in Learning Theory: Methods, Models and Applications, NATO Science Series III: Computer and Systems Sciences, Vol. 190, 190, pages: 179-196, NATO Science Series III: Computer and Systems Sciences, (Editors: J Suykens and G Horvath and S Basu and C Micchelli and J Vandewalle), IOS Press, Amsterdam, 2003 (inbook)

[BibTex]

[BibTex]


no image
m-Alternative Forced Choice—Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F.

Biologische Kybernetik, Graduate School for Neural and Behavioural Sciences, Tübingen, 2003 (diplomathesis)

[BibTex]

[BibTex]


no image
An Introduction to Support Vector Machines

Schölkopf, B.

In Recent Advances and Trends in Nonparametric Statistics , pages: 3-17, (Editors: MG Akritas and DN Politis), Elsevier, Amsterdam, The Netherlands, 2003 (inbook)

Web DOI [BibTex]

Web DOI [BibTex]


no image
Statistical Learning and Kernel Methods in Bioinformatics

Schölkopf, B., Guyon, I., Weston, J.

In Artificial Intelligence and Heuristic Methods in Bioinformatics, 183, pages: 1-21, 3, (Editors: P Frasconi und R Shamir), IOS Press, Amsterdam, The Netherlands, 2003 (inbook)

[BibTex]

[BibTex]


no image
Interactive Images

Toyama, K., Schölkopf, B.

(MSR-TR-2003-64), Microsoft Research, Cambridge, UK, 2003 (techreport)

Abstract
Interactive Images are a natural extension of three recent developments: digital photography, interactive web pages, and browsable video. An interactive image is a multi-dimensional image, displayed two dimensions at a time (like a standard digital image), but with which a user can interact to browse through the other dimensions. One might consider a standard video sequence viewed with a video player as a simple interactive image with time as the third dimension. Interactive images are a generalization of this idea, in which the third (and greater) dimensions may be focus, exposure, white balance, saturation, and other parameters. Interaction is handled via a variety of modes including those we call ordinal, pixel-indexed, cumulative, and comprehensive. Through exploration of three novel forms of interactive images based on color, exposure, and focus, we will demonstrate the compelling nature of interactive images.

Web [BibTex]

Web [BibTex]


no image
Statistical Learning and Kernel Methods

Navia-Vázquez, A., Schölkopf, B.

In Adaptivity and Learning—An Interdisciplinary Debate, pages: 161-186, (Editors: R.Kühn and R Menzel and W Menzel and U Ratsch and MM Richter and I-O Stamatescu), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

[BibTex]

[BibTex]


no image
A Short Introduction to Learning with Kernels

Schölkopf, B., Smola, A.

In Proceedings of the Machine Learning Summer School, Lecture Notes in Artificial Intelligence, Vol. 2600, pages: 41-64, LNAI 2600, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Heidelberg, Germany, 2003 (inbook)

[BibTex]

[BibTex]


no image
Bayesian Kernel Methods

Smola, A., Schölkopf, B.

In Advanced Lectures on Machine Learning, Machine Learning Summer School 2002, Lecture Notes in Computer Science, Vol. 2600, LNAI 2600, pages: 65-117, 0, (Editors: S Mendelson and AJ Smola), Springer, Berlin, Germany, 2003 (inbook)

DOI [BibTex]

DOI [BibTex]


no image
Stability of ensembles of kernel machines

Elisseeff, A., Pontil, M.

In 190, pages: 111-124, NATO Science Series III: Computer and Systems Science, (Editors: Suykens, J., G. Horvath, S. Basu, C. Micchelli and J. Vandewalle), IOS press, Netherlands, 2003 (inbook)

[BibTex]

[BibTex]

2002


no image
Kernel Dependency Estimation

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.

(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)

Abstract
We consider the learning problem of finding a dependency between a general class of objects and another, possibly different, general class of objects. The objects can be for example: vectors, images, strings, trees or graphs. Such a task is made possible by employing similarity measures in both input and output spaces using kernel functions, thus embedding the objects into vector spaces. Output kernels also make it possible to encode prior information and/or invariances in the loss function in an elegant way. We experimentally validate our approach on several tasks: mapping strings to strings, pattern recognition, and reconstruction from partial images.

PDF [BibTex]

2002

PDF [BibTex]


no image
Global Geometry of SVM Classifiers

Zhou, D., Xiao, B., Zhou, H., Dai, R.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)

Abstract
We construct an geometry framework for any norm Support Vector Machine (SVM) classifiers. Within this framework, separating hyperplanes, dual descriptions and solutions of SVM classifiers are constructed by a purely geometric fashion. In contrast with the optimization theory used in SVM classifiers, we have no complicated computations any more. Each step in our theory is guided by elegant geometric intuitions.

PDF PostScript [BibTex]

PDF PostScript [BibTex]


no image
Computationally Efficient Face Detection

Romdhani, S., Torr, P., Schölkopf, B., Blake, A.

(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)

Web [BibTex]

Web [BibTex]


no image
Nonlinear Multivariate Analysis with Geodesic Kernels

Kuss, M.

Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)

GZIP [BibTex]

GZIP [BibTex]


no image
Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

EU-Project BLISS, January 2002 (techreport)

GZIP [BibTex]

GZIP [BibTex]