74 results
(View BibTeX file of all listed publications)

**Studying large-scale brain networks: electrical stimulation and neural-event-triggered fMRI**
Twenty-Second Annual Computational Neuroscience Meeting (CNS*2013), July 2013, journal = {BMC Neuroscience},
year = {2013},
month = {7},
volume = {14},
number = {Supplement 1},
pages = {A1}, (talk)

**A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)**
In *Brain-Computer Interface Research*, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

**Semi-supervised learning in causal and anticausal settings**
In *Empirical Inference*, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Tractable large-scale optimization in machine learning**
In *Tractability: Practical Approaches to Hard Problems*, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

**MR-Based Attenuation Correction for Combined Brain PET/MR: Robustness of Atlas- and Pattern Recognition Method to Atlas Registration Failures**
IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE MIC), 2013 (talk)

**Domain Generalization via Invariant Feature Representation**
30th International Conference on Machine Learning (ICML2013), 2013 (talk)

**On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension**
In *Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik*, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

**Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik**
Springer, 2013 (book)

**Projected Newton-type methods in machine learning**
In *Optimization for Machine Learning*, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

**Combined whole-body PET/MR imaging: MR contrast agents do not affect the quantitative accuracy of PET following attenuation correction**
(SST15-05 ), 97th Scientific Assemble and Annual Meeting of the Radiological Society of North America (RSNA), December 2011 (talk)

**Optimization for Machine Learning**
pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)

**Cooperative Cuts: a new use of submodularity in image segmentation**
Second I.S.T. Austria Symposium on Computer Vision and Machine Learning, October 2011 (talk)

**Effect of MR Contrast Agents on Quantitative Accuracy of PET in Combined Whole-Body PET/MR Imaging**
2011(MIC3-3), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

**First Results on Patients and Phantoms of a Fully Integrated Clinical Whole-Body PET/MRI**
2011(J2-8), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (talk)

**Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging**
(OP314), Annual Congress of the European Association of Nuclear Medicine (EANM), October 2011 (talk)

**Multi-parametric Tumor Characterization and Therapy Monitoring using Simultaneous PET/MRI: initial results for Lung Cancer and GvHD**
(T110), 2011 World Molecular Imaging Congress (WMIC), September 2011 (talk)

**Statistical Image Analysis and Percolation Theory **
2011 Joint Statistical Meetings (JSM), August 2011 (talk)

**Bayesian Time Series Models**
pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)

**Statistical Learning Theory: Models, Concepts, and Results**
In *Handbook of the History of Logic, Vol. 10: Inductive Logic*, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

**Cooperative Cuts**
COSA Workshop: Combinatorial Optimization, Statistics, and Applications, March 2011 (talk)

**Robot Learning**
In *Encyclopedia of Machine Learning*, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

**What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI**
In *Affective Computing and Intelligent Interaction*, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

**Kernel Methods in Bioinformatics **
In *Handbook of Statistical Bioinformatics*, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

**Handbook of Statistical Bioinformatics**
pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)

**Cue Combination: Beyond Optimality**
In *Sensory Cue Integration*, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

**A Kernel Method for the Two-Sample-Problem**
20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

**Ab-initio gene finding using machine learning**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Reinforcement Learning by Reward-Weighted Regression**
NIPS Workshop: Towards a New Reinforcement Learning? , December 2006 (talk)

**Graph boosting for molecular QSAR analysis**
NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

**Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions**
NIPS Workshop on Causality and Feature Selection, December 2006 (talk)

**Learning Optimal EEG Features Across Time, Frequency and Space**
NIPS Workshop on Current Trends in Brain-Computer Interfacing, December 2006 (talk)

**Acquiring web page information without commitment to downloading the web page**
United States Patent, No 7155489, December 2006 (patent)

**Semi-Supervised Learning**
Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

**Prediction of Protein Function from Networks**
In *Semi-Supervised Learning*, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**Discrete Regularization**
In *Semi-supervised Learning*, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

**A Machine Learning Approach for Determining the PET Attenuation Map from Magnetic Resonance Images**
IEEE Medical Imaging Conference, November 2006 (talk)

**Interactive images**
United States Patent, No 7120293, October 2006 (patent)

**Semi-Supervised Support Vector Machines and Application to Spam Filtering**
ECML Discovery Challenge Workshop, September 2006 (talk)

**Semi-Supervised Learning**
pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)

**Inferential Structure Determination: Probabilistic determination and validation of NMR structures**
Gordon Research Conference on Computational Aspects of Biomolecular
NMR, September 2006 (talk)

**Machine Learning Algorithms for Polymorphism Detection**
2nd ISCB Student Council Symposium, August 2006 (talk)

**Pattern detection methods and systems and face detection methods and systems**
United States Patent, No 7099504, August 2006 (patent)

**Inferential structure determination: Overview and new developments**
Sixth CCPN Annual Conference: Efficient and Rapid Structure Determination by NMR, July 2006 (talk)

**MR/PET Attenuation Correction**
Max-Planck-Gesellschaft, Biologische Kybernetik, July 2006 (patent)

**MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models**
ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

**Sampling for non-conjugate infinite latent feature models**
(Editors: Bernardo, J. M.), 8th Valencia International Meeting on Bayesian Statistics (ISBA), June 2006 (talk)

**An Inventory of Sequence Polymorphisms For Arabidopsis**
17th International Conference on Arabidopsis Research, April 2006 (talk)

**Machine Learning and Applications in Biology**
6th Course in Bioinformatics for Molecular Biologist, March 2006 (talk)

**Gaussian Processes for Machine Learning**
pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)