Sra, S., Nowozin, S., Wright, S.
Optimization for Machine Learning
pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)
Barber, D., Cemgil, A., Chiappa, S.
Bayesian Time Series Models
pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)
Seldin, Y., Laviolette, F., Shawe-Taylor, J., Peters, J., Auer, P.
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)
Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.
Non-stationary Correction of Optical Aberrations
(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)
Nickisch, H., Seeger, M.
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint
Max Planck Institute for Biological Cybernetics, March 2011 (techreport)
Langovoy, M., Wittich, O.
Multiple testing, uncertainty and realistic pictures
(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)
Lu, H., Schölkopf, B., Zhao, H.
Handbook of Statistical Bioinformatics
pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)
Sra, S.
Nonconvex proximal splitting: batch and incremental algorithms
(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)
Langovoy, M., Wittich, O.
Computationally efficient algorithms for statistical image processing: Implementation in R
(2010-053), EURANDOM, Technische Universiteit Eindhoven, December 2010 (techreport)
Seeger, M., Nickisch, H.
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference
Max Planck Institute for Biological Cybernetics, December 2010 (techreport)
Seldin, Y.
A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)
Tandon, R., Sra, S.
Sparse nonnegative matrix approximation: new formulations and algorithms
(193), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)
Langovoy, M., Wittich, O.
Robust nonparametric detection of objects in noisy images
(2010-049), EURANDOM, Technische Universiteit Eindhoven, September 2010 (techreport)
Seeger, M., Nickisch, H.
Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models
Max Planck Institute for Biological Cybernetics, August 2010 (techreport)
Jegelka, S., Bilmes, J.
Cooperative Cuts for Image Segmentation
(UWEETR-1020-0003), University of Washington, Washington DC, USA, August 2010 (techreport)
Barbero, A., Sra, S.
Fast algorithms for total-variationbased optimization
(194), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2010 (techreport)
Nickisch, H., Rasmussen, C.
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
Max Planck Institute for Biological Cybernetics, June 2010 (techreport)
Sra, S.
Generalized Proximity and Projection with Norms and Mixed-norms
(192), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2010 (techreport)
Jegelka, S., Bilmes, J.
Cooperative Cuts: Graph Cuts with Submodular Edge Weights
(189), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, March 2010 (techreport)
Sigaud, O., Peters, J.
From Motor Learning to Interaction Learning in Robots
pages: 538, Studies in Computational Intelligence ; 264, (Editors: O Sigaud, J Peters), Springer, Berlin, Germany, January 2010 (book)
Steudel, B., Ay, N.
Information-theoretic inference of common ancestors
Computing Research Repository (CoRR), abs/1010.5720, pages: 18, 2010 (techreport)
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)
Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.
Kernel Dependency Estimation
(98), Max Planck Institute for Biological Cybernetics, August 2002 (techreport)
Zhou, D., Xiao, B., Zhou, H., Dai, R.
Global Geometry of SVM Classifiers
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2002 (techreport)
Romdhani, S., Torr, P., Schölkopf, B., Blake, A.
Computationally Efficient Face Detection
(MSR-TR-2002-69), Microsoft Research, June 2002 (techreport)
Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.
Kernel-based nonlinear blind source separation
EU-Project BLISS, January 2002 (techreport)
von Luxburg, U., Bousquet, O., Schölkopf, B.
A compression approach to support vector model selection
(101), Max Planck Institute for Biological Cybernetics, 2002, see more detailed JMLR version (techreport)
Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.
Feature Selection and Transduction for Prediction of Molecular Bioactivity for Drug Design
Max Planck Institute for Biological Cybernetics / Biowulf Technologies, 2002 (techreport)
Williams, C., Rasmussen, C., Schwaighofer, A., Tresp, V.
Observations on the Nyström Method for Gaussian Process Prediction
Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2002 (techreport)
Franz, M., Schölkopf, B., Bülthoff, H.
Homing by parameterized scene matching
(46), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, Febuary 1997 (techreport)
Schölkopf, B.
Support vector learning
pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)