46 results
(View BibTeX file of all listed publications)

**Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI)**
pages: 869, AUAI Press, June 2016 (proceedings)

**Nonlinear functional causal models for distinguishing cause from effect**
In *Statistics and Causality: Methods for Applied Empirical Research*, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

**Advances in computational imaging: Benchmarking Deblurring Algorithms, Deep Neural Inpainting, Depth Estimation from Light Fields**
Eberhard Karls Universität Tübingen, Germany, 2016 (phdthesis)

**A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis**
In *Brain-Computer Interfaces: Lab Experiments to Real-World Applications*, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

**Tractable Structured Prediction using the Permutohedral Lattice**
ETH Zurich, 2016 (phdthesis)

**Screening Rules for Convex Problems**
2016 (unpublished) Submitted

**easyGWAS: An Integrated Computational Framework for Advanced Genome-Wide Association Studies**
Eberhard Karls Universität Tübingen, November 2015 (phdthesis)

**Causal Discovery Beyond Conditional Independences**
Eberhard Karls Universität Tübingen, Germany, October 2015 (phdthesis)

**From Points to Probability Measures: A Statistical Learning on Distributions with Kernel Mean Embedding**
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

**Machine Learning Approaches to Image Deconvolution**
University of Tübingen, Germany, University of Tübingen, Germany, September 2015 (phdthesis)

**Kernel methods in medical imaging**
In *Handbook of Biomedical Imaging*, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

**Blind Retrospective Motion Correction of MR Images**
University of Tübingen, Germany, May 2015 (phdthesis)

**Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Diffusion Imaging Data**
In *Visualization and Processing of Higher Order Descriptors for Multi-Valued Data*, pages: 299-319, (Editors: Hotz, I. and Schultz, T.), Springer, 2015 (inbook)

**A Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

**Sequential Image Deconvolution Using Probabilistic Linear Algebra**
Technical University of Munich, Germany, 2015 (mastersthesis)

**Causal Inference in Neuroimaging**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

**The effect of frowning on attention**
Graduate Training Centre of Neuroscience, University of Tübingen, Germany, 2015 (mastersthesis)

**Justifying Information-Geometric Causal Inference**
In *Measures of Complexity: Festschrift for Alexey Chervonenkis*, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

**Projected Newton-type methods in machine learning**
In *Optimization for Machine Learning*, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)

**Optimization for Machine Learning**
pages: 494, Neural information processing series, MIT Press, Cambridge, MA, USA, December 2011 (book)

**Bayesian Time Series Models**
pages: 432, Cambridge University Press, Cambridge, UK, August 2011 (book)

**JMLR Workshop and Conference Proceedings Volume 19: COLT 2011**
pages: 834, MIT Press, Cambridge, MA, USA, 24th Annual Conference on Learning Theory , June 2011 (proceedings)

**Statistical Learning Theory: Models, Concepts, and Results**
In *Handbook of the History of Logic, Vol. 10: Inductive Logic*, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)

**Crowdsourcing for optimisation of deconvolution methods via an iPhone application**
Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

**Learning functions with kernel methods**
University of Pavia, Italy, January 2011 (phdthesis)

**Robot Learning**
In *Encyclopedia of Machine Learning*, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)

**What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI**
In *Affective Computing and Intelligent Interaction*, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)

**Kernel Methods in Bioinformatics **
In *Handbook of Statistical Bioinformatics*, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)

**Handbook of Statistical Bioinformatics**
pages: 627, Springer Handbooks of Computational Statistics, Springer, Berlin, Germany, 2011 (book)

**Cue Combination: Beyond Optimality**
In *Sensory Cue Integration*, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

**Model Learning in Robot Control**
Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

**Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond**
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

**Nonlinear Multivariate Analysis with Geodesic Kernels**
Biologische Kybernetik, Technische Universität Berlin, February 2002 (diplomathesis)

**Concentration Inequalities and Empirical Processes Theory Applied to the Analysis of Learning Algorithms**
Biologische Kybernetik, Ecole Polytechnique, 2002 (phdthesis) Accepted

**Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge**
Biologische Kybernetik, 2002 (phdthesis)

**Variationsverfahren zur Untersuchung von
Grundzustandseigenschaften des Ein-Band Hubbard-Modells**
Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

**Cerebellar Control of Robot Arms**
Biologische Kybernetik, Technische Univeristät München, München, Germany, 2001 (diplomathesis)

**On Unsupervised Learning of Mixtures of Markov Sources**
Biologische Kybernetik, The Hebrew University of Jerusalem, Israel, 2001 (diplomathesis)

**Extracting egomotion from optic flow: limits of accuracy and neural matched filters**
In pages: 143-168, Springer, Berlin, 2001 (inbook)

**Support Vector Machines: Theorie und Anwendung auf Prädiktion epileptischer Anfälle auf der Basis von EEG-Daten**
Biologische Kybernetik, Institut für Angewandte Mathematik, Universität Bonn, 2001, Advised by Prof. Dr. S. Albeverio (diplomathesis)

**Some Aspects of Modelling Human Spatial Vision: Contrast Discrimination**
University of Oxford, University of Oxford, October 1999 (phdthesis)

**Kernel principal component analysis.**
In *Advances in Kernel Methods—Support Vector Learning*, pages: 327-352, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)

**Apprentissage Automatique et Simplicite**
Biologische Kybernetik, 1999, In french (diplomathesis)

**Machine Learning and Language Acquisition: A Model of Child’s Learning of Turkish Morphophonology**
Middle East Technical University, Ankara, Turkey, 1999 (mastersthesis)

**Entropy numbers, operators and support vector kernels.**
In *Advances in Kernel Methods - Support Vector Learning*, pages: 127-144, (Editors: B Schölkopf and CJC Burges and AJ Smola), MIT Press, Cambridge, MA, 1999 (inbook)

**Advances in Kernel Methods - Support Vector Learning**
MIT Press, Cambridge, MA, 1999 (book)