Header logo is ei


2003


no image
Natural Actor-Critic

Peters, J., Vijayakumar, S., Schaal, S.

NIPS Workshop " Planning for the Real World: The promises and challenges of dealing with uncertainty", December 2003 (poster)

PDF Web [BibTex]

2003

PDF Web [BibTex]


no image
Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2

Finger, F., Schorle, C., Zien, A., Gebhard, P., Goldring, M., Aigner, T.

Arthritis & Rheumatism, 48(12):3395-3403, December 2003 (article)

[BibTex]

[BibTex]


no image
A Study on Rainfall - Runoff Models for Improving Ensemble Streamflow Prediction: 1. Rainfallrunoff Models Using Artificial Neural Networks

Jeong, D., Kim, Y., Cho, S., Shin, H.

Journal of the Korean Society of Civil Engineers, 23(6B):521-530, December 2003 (article)

Abstract
The previous ESP (Ensemble Streamflow Prediction) studies conducted in Korea reported that the modeling error is a major source of the ESP forecast error in winter and spring (i.e. dry seasons), and thus suggested that improving the rainfall-runoff model would be critical to obtain more accurate probabilistic forecasts with ESP. This study used two types of Artificial Neural Networks (ANN), such as a Single Neural Network (SNN) and an Ensemble Neural Networks (ENN), to improve the simulation capability of the rainfall-runoff model of the ESP forecasting system for the monthly inflow to the Daecheong dam. Applied for the first time to Korean hydrology, ENN combines the outputs of member models so that it can control the generalization error better than SNN. Because the dry and the flood season in Korea shows considerably different streamflow characteristics, this study calibrated the rainfall-runoff model separately for each season. Therefore, four rainfall-runoff models were developed according to the ANN types and the seasons. This study compared the ANN models with a conceptual rainfall-runoff model called TANK and verified that the ANN models were superior to TANK. Among the ANN models, ENN was more accurate than SNN. The ANN model performance was improved when the model was calibrated separately for the dry and the flood season. The best ANN model developed in this article will be incorporated into the ESP system to increase the forecast capability of ESP for the monthly inflow to the Daecheong dam.

[BibTex]

[BibTex]


no image
Quantitative Cerebral Blood Flow Measurements in the Rat Using a Beta-Probe and H215O

Weber, B., Spaeth, N., Wyss, M., Wild, D., Burger, C., Stanley, R., Buck, A.

Journal of Cerebral Blood Flow and Metabolism, 23(12):1455-1460, December 2003 (article)

Abstract
Beta-probes are a relatively new tool for tracer kinetic studies in animals. They are highly suited to evaluate new positron emission tomography tracers or measure physiologic parameters at rest and after some kind of stimulation or intervention. In many of these experiments, the knowledge of CBF is highly important. Thus, the purpose of this study was to evaluate the method of CBF measurements using a beta-probe and H215O. CBF was measured in the barrel cortex of eight rats at baseline and after acetazolamide challenge. Trigeminal nerve stimulation was additionally performed in five animals. In each category, three injections of 250 to 300 MBq H215O were performed at 10-minute intervals. Data were analyzed using a standard one-tissue compartment model (K1 = CBF, k2 = CBF/p, where p is the partition coefficient). Values for K1 were 0.35 plusminus 0.09, 0.58 plusminus 0.16, and 0.49 plusminus 0.03 mL dot min-1 dot mL-1 at rest, after acetazolamide challenge, and during trigeminal nerve stimulation, respectively. The corresponding values for k2 were 0.55 plusminus 0.12, 0.94 plusminus 0.16, and 0.85 plusminus 0.12 min-7, and for p were 0.64 plusminus 0.05, 0.61 plusminus 0.07, and 0.59 plusminus 0.06.The standard deviation of the difference between two successive experiments, a measure for the reproducibility of the method, was 10.1%, 13.0%, and 5.7% for K1, k2, and p, respectively. In summary, beta-probes in conjunction with H215O allow the reproducible quantitative measurement of CBF, although some systematic underestimation seems to occur, probably because of partial volume effects.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Texture and haptic cues in slant discrimination: Measuring the effect of texture type on cue combination

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

Journal of Vision, 3(12):26, 2003 Fall Vision Meeting of the Optical Society of America, December 2003 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The influence of each cue in such average depends on the reliability of the source of information. (Young, Landy, & Maloney, 1993; Ernst & Banks, 2002.) In particular, Ernst & Banks (2002) formulate the combination performed by the human brain as that of the minimum variance unbiased estimator that can be constructed from the available cues. Using slant discrimination and slant judgment via probe adjustment as tasks, we have observed systematic differences in performance of human observers when a number of different types of textures were used as cue to slant (Rosas, Wichmann & Wagemans, 2003). If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. We have combined these texture types with object motion but the obtained results are difficult to reconcile with the unbiased minimum variance estimator model (Rosas & Wagemans, 2003). This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, & Landy (2002) have shown that while for between-modality combination the human visual system has access to the single-cue information, for within-modality combination (visual cues: disparity and texture) the single-cue information is lost, suggesting a coupling between these cues. Then, in the present study we combine the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition the texture cue and the haptic cue to slant are combined as predicted by an unbiased, minimum variance estimator model.

Web DOI [BibTex]

Web DOI [BibTex]


no image
Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation

Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.

Journal of Machine Learning Research, 4(7-8):1319-1338, November 2003 (article)

Abstract
We propose two methods that reduce the post-nonlinear blind source separation problem (PNL-BSS) to a linear BSS problem. The first method is based on the concept of maximal correlation: we apply the alternating conditional expectation (ACE) algorithm--a powerful technique from non-parametric statistics--to approximately invert the componentwise nonlinear functions. The second method is a Gaussianizing transformation, which is motivated by the fact that linearly mixed signals before nonlinear transformation are approximately Gaussian distributed. This heuristic, but simple and efficient procedure works as good as the ACE method. Using the framework provided by ACE, convergence can be proven. The optimal transformations obtained by ACE coincide with the sought-after inverse functions of the nonlinearities. After equalizing the nonlinearities, temporal decorrelation separation (TDSEP) allows us to recover the source signals. Numerical simulations testing "ACE-TD" and "Gauss-TD" on realistic examples are performed with excellent results.

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Correlated stage- and subfield-associated hippocampal gene expression patterns in experimental and human temporal lobe epilepsy

Becker, A., Chen, J., Zien, A., Sochivko, D., Normann, S., Schramm, J., Elger, C., Wiestler, O., Blumcke, I.

European Journal of Neuroscience, 18(10):2792-2802, November 2003 (article)

Abstract
Epileptic activity evokes profound alterations of hippocampal organization and function. Genomic responses may reflect immediate consequences of excitatory stimulation as well as sustained molecular processes related to neuronal plasticity and structural remodeling. Using oligonucleotide microarrays with 8799 sequences, we determined subregional gene expression profiles in rats subjected to pilocarpine-induced epilepsy (U34A arrays, Affymetrix, Santa Clara, CA, USA; P < 0.05, twofold change, n = 3 per stage). Patterns of gene expression corresponded to distinct stages of epilepsy development. The highest number of differentially expressed genes (dentate gyrus, approx. 400 genes and CA1, approx. 700 genes) was observed 3 days after status epilepticus. The majority of up-regulated genes was associated with mechanisms of cellular stress and injury - 14 days after status epilepticus, numerous transcription factors and genes linked to cytoskeletal and synaptic reorganization were differentially expressed and, in the stage of chronic spontaneous seizures, distinct changes were observed in the transcription of genes involved in various neurotransmission pathways and between animals with low vs. high seizure frequency. A number of genes (n = 18) differentially expressed during the chronic epileptic stage showed corresponding expression patterns in hippocampal subfields of patients with pharmacoresistant temporal lobe epilepsy (n = 5 temporal lobe epilepsy patients; U133A microarrays, Affymetrix; covering 22284 human sequences). These data provide novel insights into the molecular mechanisms of epileptogenesis and seizure-associated cellular and structural remodeling of the hippocampus.

[BibTex]

[BibTex]


no image
Concentration Inequalities for Sub-Additive Functions Using the Entropy Method

Bousquet, O.

Stochastic Inequalities and Applications, 56, pages: 213-247, Progress in Probability, (Editors: Giné, E., C. Houdré and D. Nualart), November 2003 (article)

Abstract
We obtain exponential concentration inequalities for sub-additive functions of independent random variables under weak conditions on the increments of those functions, like the existence of exponential moments for these increments. As a consequence of these general inequalities, we obtain refinements of Talagrand's inequality for empirical processes and new bounds for randomized empirical processes. These results are obtained by further developing the entropy method introduced by Ledoux.

PostScript [BibTex]

PostScript [BibTex]


no image
YKL-39 (chitinase 3-like protein 2), but not YKL-40 (chitinase 3-like protein 1), is up regulated in osteoarthritic chondrocytes

Knorr, T., Obermayr, F., Bartnik, E., Zien, A., Aigner, T.

Annals of the Rheumatic Diseases, 62(10):995-998, October 2003 (article)

Abstract
OBJECTIVE: To investigate quantitatively the mRNA expression levels of YKL-40, an established marker of rheumatoid and osteoarthritic cartilage degeneration in synovial fluid and serum, and a closely related molecule YKL-39, in articular chondrocytes. METHODS: cDNA array and online quantitative polymerase chain reaction (PCR) were used to measure mRNA expression levels of YKL-39 and YKL-40 in chondrocytes in normal, early degenerative, and late stage osteoarthritic cartilage samples. RESULTS: Expression analysis showed high levels of both proteins in normal articular chondrocytes, with lower levels of YKL-39 than YKL-40. Whereas YKL-40 was significantly down regulated in late stage osteoarthritic chondrocytes, YKL-39 was significantly up regulated. In vitro both YKLs were down regulated by interleukin 1beta. CONCLUSIONS: The up regulation of YKL-39 in osteoarthritic cartilage suggests that YKL-39 may be a more accurate marker of chondrocyte activation than YKL-40, although it has yet to be established as a suitable marker in synovial fluid and serum. The decreased expression of YKL-40 by osteoarthritic chondrocytes is surprising as increased levels have been reported in rheumatoid and osteoarthritic synovial fluid, where it may derive from activated synovial cells or osteophytic tissue or by increased matrix destruction in the osteoarthritic joint. YKL-39 and YKL-40 are potentially interesting marker molecules for arthritic joint disease because they are abundantly expressed by both normal and osteoarthritic chondrocytes.

[BibTex]

[BibTex]


no image
Statistical Learning Theory, Capacity and Complexity

Schölkopf, B.

Complexity, 8(4):87-94, July 2003 (article)

Abstract
We give an exposition of the ideas of statistical learning theory, followed by a discussion of how a reinterpretation of the insights of learning theory could potentially also benefit our understanding of a certain notion of complexity.

Web DOI [BibTex]


no image
Dealing with large Diagonals in Kernel Matrices

Weston, J., Schölkopf, B., Eskin, E., Leslie, C., Noble, W.

Annals of the Institute of Statistical Mathematics, 55(2):391-408, June 2003 (article)

Abstract
In kernel methods, all the information about the training data is contained in the Gram matrix. If this matrix has large diagonal values, which arises for many types of kernels, then kernel methods do not perform well: We propose and test several methods for dealing with this problem by reducing the dynamic range of the matrix while preserving the positive definiteness of the Hessian of the quadratic programming problem that one has to solve when training a Support Vector Machine, which is a common kernel approach for pattern recognition.

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The em Algorithm for Kernel Matrix Completion with Auxiliary Data

Tsuda, K., Akaho, S., Asai, K.

Journal of Machine Learning Research, 4, pages: 67-81, May 2003 (article)

PDF [BibTex]

PDF [BibTex]


no image
Constructing Descriptive and Discriminative Non-linear Features: Rayleigh Coefficients in Kernel Feature Spaces

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):623-628, May 2003 (article)

Abstract
We incorporate prior knowledge to construct nonlinear algorithms for invariant feature extraction and discrimination. Employing a unified framework in terms of a nonlinearized variant of the Rayleigh coefficient, we propose nonlinear generalizations of Fisher‘s discriminant and oriented PCA using support vector kernel functions. Extensive simulations show the utility of our approach.

DOI [BibTex]

DOI [BibTex]


no image
A unifying computational framework for optimization and dynamic systemsapproaches to motor control

Mohajerian, P., Peters, J., Ijspeert, A., Schaal, S.

10th Joint Symposium on Neural Computation (JSNC 2003), 10, pages: 1, May 2003 (poster)

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., Müller, K.

Neural Computation, 15(5):1089-1124, May 2003 (article)

Abstract
We propose kTDSEP, a kernel-based algorithm for nonlinear blind source separation (BSS). It combines complementary research fields: kernel feature spaces and BSS using temporal information. This yields an efficient algorithm for nonlinear BSS with invertible nonlinearity. Key assumptions are that the kernel feature space is chosen rich enough to approximate the nonlinearity and that signals of interest contain temporal information. Both assumptions are fulfilled for a wide set of real-world applications. The algorithm works as follows: First, the data are (implicitly) mapped to a high (possibly infinite)—dimensional kernel feature space. In practice, however, the data form a smaller submanifold in feature space—even smaller than the number of training data points—a fact that has already been used by, for example, reduced set techniques for support vector machines. We propose to adapt to this effective dimension as a preprocessing step and to construct an orthonormal basis of this submanifold. The latter dimension-reduction step is essential for making the subsequent application of BSS methods computationally and numerically tractable. In the reduced space, we use a BSS algorithm that is based on second-order temporal decorrelation. Finally, we propose a selection procedure to obtain the original sources from the extracted nonlinear components automatically. Experiments demonstrate the excellent performance and efficiency of our kTDSEP algorithm for several problems of nonlinear BSS and for more than two sources.

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Unifying Computational Framework for Optimization and Dynamic Systems Approaches to Motor Control

Mohajerian, P., Peters, J., Ijspeert, A., Schaal, S.

13th Annual Neural Control of Movement Meeting 2003, 13, pages: 1, April 2003 (poster)

[BibTex]

[BibTex]


no image
Tractable Inference for Probabilistic Data Models

Csato, L., Opper, M., Winther, O.

Complexity, 8(4):64-68, April 2003 (article)

Abstract
We present an approximation technique for probabilistic data models with a large number of hidden variables, based on ideas from statistical physics. We give examples for two nontrivial applications. © 2003 Wiley Periodicals, Inc.

PDF GZIP Web [BibTex]

PDF GZIP Web [BibTex]


no image
Feature selection and transduction for prediction of molecular bioactivity for drug design

Weston, J., Perez-Cruz, F., Bousquet, O., Chapelle, O., Elisseeff, A., Schölkopf, B.

Bioinformatics, 19(6):764-771, April 2003 (article)

Abstract
Motivation: In drug discovery a key task is to identify characteristics that separate active (binding) compounds from inactive (non-binding) ones. An automated prediction system can help reduce resources necessary to carry out this task. Results: Two methods for prediction of molecular bioactivity for drug design are introduced and shown to perform well in a data set previously studied as part of the KDD (Knowledge Discovery and Data Mining) Cup 2001. The data is characterized by very few positive examples, a very large number of features (describing three-dimensional properties of the molecules) and rather different distributions between training and test data. Two techniques are introduced specifically to tackle these problems: a feature selection method for unbalanced data and a classifier which adapts to the distribution of the the unlabeled test data (a so-called transductive method). We show both techniques improve identification performance and in conjunction provide an improvement over using only one of the techniques. Our results suggest the importance of taking into account the characteristics in this data which may also be relevant in other problems of a similar type.

Web [BibTex]


no image
Use of the Zero-Norm with Linear Models and Kernel Methods

Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.

Journal of Machine Learning Research, 3, pages: 1439-1461, March 2003 (article)

Abstract
We explore the use of the so-called zero-norm of the parameters of linear models in learning. Minimization of such a quantity has many uses in a machine learning context: for variable or feature selection, minimizing training error and ensuring sparsity in solutions. We derive a simple but practical method for achieving these goals and discuss its relationship to existing techniques of minimizing the zero-norm. The method boils down to implementing a simple modification of vanilla SVM, namely via an iterative multiplicative rescaling of the training data. Applications we investigate which aid our discussion include variable and feature selection on biological microarray data, and multicategory classification.

PDF PostScript PDF [BibTex]

PDF PostScript PDF [BibTex]


no image
Phase Information and the Recognition of Natural Images

Braun, D., Wichmann, F., Gegenfurtner, K.

6, pages: 138, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Fourier phase plays an important role in determining image structure. For example, when the phase spectrum of an image showing a ower is swapped with the phase spectrum of an image showing a tank, then we will usually perceive a tank in the resulting image, even though the amplitude spectrum is still that of the ower. Also, when the phases of an image are randomly swapped across frequencies, the resulting image becomes impossible to recognize. Our goal was to evaluate the e ect of phase manipulations in a more quantitative manner. On each trial subjects viewed two images of natural scenes. The subject had to indicate which one of the two images contained an animal. The spectra of the images were manipulated by adding random phase noise at each frequency. The phase noise was uniformly distributed in the interval [;+], where  was varied between 0 degree and 180 degrees. Image pairs were displayed for 100 msec. Subjects were remarkably resistant to the addition of phase noise. Even with [120; 120] degree noise, subjects still were at a level of 75% correct. The introduction of phase noise leads to a reduction of image contrast. Subjects were slightly better than a simple prediction based on this contrast reduction. However, when contrast response functions were measured in the same experimental paradigm, we found that performance in the phase noise experiment was signi cantly lower than that predicted by the corresponding contrast reduction.

Web [BibTex]

Web [BibTex]


no image
Constraints measures and reproduction of style in robot imitation learning

Bakir, GH., Ilg, W., Franz, MO., Giese, M.

6, pages: 70, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Imitation learning is frequently discussed as a method for generating complex behaviors in robots by imitating human actors. The kinematic and the dynamic properties of humans and robots are typically quite di erent, however. For this reason observed human trajectories cannot be directly transferred to robots, even if their geometry is humanoid. Instead the human trajectory must be approximated by trajectories that can be realized by the robot. During this approximation deviations from the human trajectory may arise that change the style of the executed movement. Alternatively, the style of the movement might be well reproduced, but the imitated trajectory might be suboptimal with respect to di erent constraint measures from robotics control, leading to non-robust behavior. Goal of the presented work is to quantify this trade-o between \imitation quality" and constraint compatibility for the imitation of complex writing movements. In our experiment, we used trajectory data from human writing movements (see the abstract of Ilg et al. in this volume). The human trajectories were mapped onto robot trajectories by minimizing an error measure that integrates constraints that are important for the imitation of movement style and a regularizing constraint that ensures smooth joint trajectories with low velocities. In a rst experiment, both the end-e ector position and the shoulder angle of the robot were optimized in order to achieve good imitation together with accurate control of the end-e ector position. In a second experiment only the end-e ector trajectory was imitated whereas the motion of the elbow joint was determined using the optimal inverse kinematic solution for the robot. For both conditions di erent constraint measures (dexterity and relative jointlimit distances) and a measure for imitation quality were assessed. By controling the weight of the regularization term we can vary continuously between robot behavior optimizing imitation quality, and behavior minimizing joint velocities.

PDF Web [BibTex]

PDF Web [BibTex]


no image
Study of Human Classification using Psychophysics and Machine Learning

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

6, pages: 149, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), Febuary 2003 (poster)

Abstract
We attempt to reach a better understanding of classi cation in humans using both psychophysical and machine learning techniques. In our psychophysical paradigm the stimuli presented to the human subjects are modi ed using machine learning algorithms according to their responses. Frontal views of human faces taken from a processed version of the MPI face database are employed for a gender classi cation task. The processing assures that all heads have same mean intensity, same pixel-surface area and are centered. This processing stage is followed by a smoothing of the database in order to eliminate, as much as possible, scanning artifacts. Principal Component Analysis is used to obtain a low-dimensional representation of the faces in the database. A subject is asked to classify the faces and experimental parameters such as class (i.e. female/male), con dence ratings and reaction times are recorded. A mean classi cation error of 14.5% is measured and, on average, 0.5 males are classi ed as females and 21.3females as males. The mean reaction time for the correctly classi ed faces is 1229 +- 252 [ms] whereas the incorrectly classi ed faces have a mean reaction time of 1769 +- 304 [ms] showing that the reaction times increase with the subject's classi- cation error. Reaction times are also shown to decrease with increasing con dence, both for the correct and incorrect classi cations. Classi cation errors, reaction times and con dence ratings are then correlated to concepts of machine learning such as separating hyperplane obtained when considering Support Vector Machines, Relevance Vector Machines, boosted Prototype and K-means Learners. Elements near the separating hyperplane are found to be classi ed with more errors than those away from it. In addition, the subject's con dence increases when moving away from the hyperplane. A preliminary analysis on the available small number of subjects indicates that K-means classi cation seems to re ect the subject's classi cation behavior best. The above learnersare then used to generate \special" elements, or representations, of the low-dimensional database according to the labels given by the subject. A memory experiment follows where the representations are shown together with faces seen or unseen during the classi cation experiment. This experiment aims to assess the representations by investigating whether some representations, or special elements, are classi ed as \seen before" despite that they never appeared in the classi cation experiment, possibly hinting at their use during human classi cation.

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Representation of Complex Movement Sequences Based on Hierarchical Spatio-Temporal Correspondence for Imitation Learning in Robotics

Ilg, W., Bakir, GH., Franz, MO., Giese, M.

6, pages: 74, (Editors: H.H. Bülthoff, K.R. Gegenfurtner, H.A. Mallot, R. Ulrich, F.A. Wichmann), 6. T{\"u}binger Wahrnehmungskonferenz (TWK), February 2003 (poster)

Abstract
Imitation learning of complex movements has become a popular topic in neuroscience, as well as in robotics. A number of conceptual as well as practical problems are still unsolved. One example is the determination of the aspects of movements which are relevant for imitation. Problems concerning the movement representation are twofold: (1) The movement characteristics of observed movements have to be transferred from the perceptual level to the level of generated actions. (2) Continuous spaces of movements with variable styles have to be approximated based on a limited number of learned example sequences. Therefore, one has to use representation with a high generalisation capability. We present methods for the representation of complex movement sequences that addresses these questions in the context of the imitation learning of writing movements using a robot arm with human-like geometry. For the transfer of complex movements from perception to action we exploit a learning-based method that represents complex action sequences by linear combination of prototypical examples (Ilg and Giese, BMCV 2002). The method of hierarchical spatio-temporal morphable models (HSTMM) decomposes action sequences automatically into movement primitives. These primitives are modeled by linear combinations of a small number of learned example trajectories. The learned spatio-temporal models are suitable for the analysis and synthesis of long action sequences, which consist of movement primitives with varying style parameters. The proposed method is illustrated by imitation learning of complex writing movements. Human trajectories were recorded using a commercial motion capture system (VICON). In the rst step the recorded writing sequences are decomposed into movement primitives. These movement primitives can be analyzed and changed in style by de ning linear combinations of prototypes with di erent linear weight combinations. Our system can imitate writing movements of di erent actors, synthesize new writing styles and can even exaggerate the writing movements of individual actors. Words and writing movements of the robot look very natural, and closely match the natural styles. These preliminary results makes the proposed method promising for further applications in learning-based robotics. In this poster we focus on the acquisition of the movement representation (identi cation and segmentation of movement primitives, generation of new writing styles by spatio-temporal morphing). The transfer of the generated writing movements to the robot considering the given kinematic and dynamic constraints is discussed in Bakir et al (this volume).

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Introduction to Variable and Feature Selection.

Guyon, I., Elisseeff, A.

Journal of Machine Learning, 3, pages: 1157-1182, 2003 (article)

[BibTex]

[BibTex]


no image
Dynamics of a rigid body in a Stokes fluid

Gonzalez, O., Graf, ABA., Maddocks, JH.

Journal of Fluid Mechanics, 2003 (article) Accepted

[BibTex]

[BibTex]


no image
A novel transient heater-foil technique for liquid crystal experiments on film cooled surfaces

Vogel, G., Graf, ABA., von Wolfersdorf, J., Weigand, B.

ASME Journal of Turbomachinery, 125, pages: 529-537, 2003 (article)

PDF [BibTex]

PDF [BibTex]


no image
Microarrays: How Many Do You Need?

Zien, A., Fluck, J., Zimmer, R., Lengauer, T.

Journal of Computational Biology, 10(3-4):653-667, 2003 (article)

Abstract
We estimate the number of microarrays that is required in order to gain reliable results from a common type of study: the pairwise comparison of different classes of samples. We show that current knowledge allows for the construction of models that look realistic with respect to searches for individual differentially expressed genes and derive prototypical parameters from real data sets. Such models allow investigation of the dependence of the required number of samples on the relevant parameters: the biological variability of the samples within each class, the fold changes in expression that are desired to be detected, the detection sensitivity of the microarrays, and the acceptable error rates of the results. We supply experimentalists with general conclusions as well as a freely accessible Java applet at www.scai.fhg.de/special/bio/howmanyarrays/ for fine tuning simulations to their particular settings.

Web [BibTex]

Web [BibTex]


no image
New Approaches to Statistical Learning Theory

Bousquet, O.

Annals of the Institute of Statistical Mathematics, 55(2):371-389, 2003 (article)

Abstract
We present new tools from probability theory that can be applied to the analysis of learning algorithms. These tools allow to derive new bounds on the generalization performance of learning algorithms and to propose alternative measures of the complexity of the learning task, which in turn can be used to derive new learning algorithms.

PostScript [BibTex]

PostScript [BibTex]


no image
Gene expression in chondrocytes assessed with use of microarrays

Aigner, T., Zien, A., Hanisch, D., Zimmer, R.

Journal of Bone and Joint Surgery, 85(Suppl 2):117-123, 2003 (article)

[BibTex]

[BibTex]


no image
Models of contrast transfer as a function of presentation time and spatial frequency.

Wichmann, F.

2003 (poster)

Abstract
Understanding contrast transduction is essential for understanding spatial vision. Using standard 2AFC contrast discrimination experiments conducted using a carefully calibrated display we previously showed that the shape of the threshold versus (pedestal) contrast (TvC) curve changes with presentation time and the performance level defined as threshold (Wichmann, 1999; Wichmann & Henning, 1999). Additional experiments looked at the change of the TvC curve with spatial frequency (Bird, Henning & Wichmann, 2002), and at how to constrain the parameters of models of contrast processing (Wichmann, 2002). Here I report modelling results both across spatial frequency and presentation time. An extensive model-selection exploration was performed using Bayesian confidence regions for the fitted parameters as well as cross-validation methods. Bird, C.M., G.B. Henning and F.A. Wichmann (2002). Contrast discrimination with sinusoidal gratings of different spatial frequency. Journal of the Optical Society of America A, 19, 1267-1273. Wichmann, F.A. (1999). Some aspects of modelling human spatial vision: contrast discrimination. Unpublished doctoral dissertation, The University of Oxford. Wichmann, F.A. & Henning, G.B. (1999). Implications of the Pedestal Effect for Models of Contrast-Processing and Gain-Control. OSA Annual Meeting Program, 62. Wichmann, F.A. (2002). Modelling Contrast Transfer in Spatial Vision [Abstract]. Journal of Vision, 2, 7a.

[BibTex]