Header logo is ei


2000


no image
Advances in Large Margin Classifiers

Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.

pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

Abstract
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

Web [BibTex]

2000

Web [BibTex]


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)

[BibTex]

[BibTex]


no image
Choosing nu in support vector regression with different noise models — theory and experiments

Chalimourda, A., Schölkopf, B., Smola, A.

In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE, International Joint Conference on Neural Networks, 2000 (inproceedings)

[BibTex]

[BibTex]

1999


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites in DNA

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lemmen, C., Smola, A., Lengauer, T., Müller, K.

In German Conference on Bioinformatics (GCB 1999), October 1999 (inproceedings)

Abstract
In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points from which regions encoding pro­ teins start, the so­called translation initiation sites (TIS). This can be modeled as a classification prob­ lem. We demonstrate the power of support vector machines (SVMs) for this task, and show how to suc­ cessfully incorporate biological prior knowledge by engineering an appropriate kernel function.

Web [BibTex]

1999

Web [BibTex]